

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

6 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-2900 FAX (603) 271-2456

3014.

SDMS DocID 0002120

July 29, 2004

Mr. James Chow USEPA Region One 1 Congress Street, Suite 1100 (HBO) Boston, MA 02114 Carrier or the 100 to 1

RE: Water Quality analysis results of the sampling program at the Beede Waste Oil Site in Plaistow, New Hampshire.

Dear Jim:

Please find enclosed a copy of the results of the water quality analyses for VOCs and the natural attenuation parameters consisting of Total Fe, Total Mn, Chloride, Sulfate, Nitrate, TKN and Alkalinity conducted on samples collected from monitoring wells at the Beede Waste Oil Site in Plaistow, NH in June 2004. Also enclosed is a copy of the memo sent to Mr. Richard Pease, a well data sheet and a water level report.

If you have any questions, please contact me at 271-0697.

Sincerely,

Leah Desmarais

Waste Management Specialist

LeahDermaran

Hazardous Waste Remediation Bureau

ENCLOSURE

CC.

Richard H. Pease, P.E., NHDES Project Manager

STATE OF NEW HAMPSHIRE INTER-DEPARTMENT COMMUNICATION

DATE: July 29, 2004

AT (OFFICE): NHDES-WMD

FROM:

Leah Desmarais

Hazardous Waste Remediation Bureau

SUBJECT:

2004 Sampling Round at the Beede Waste Oil Site in Plaistow, New Hampshire

TO:

Richard H. Pease, P.E., NHDES Project Manager

CC:

James Chow, USEPA Project Manager

Charles Crocetti, Sanborn, Head & Associates

Sharon G. Perkins, NHDES

Enclosures:

Laboratory results for VOCs, and the natural attenuation samples consisting of Total Fe, Total

Mn, Chloride, Sulfate, Nitrate, TKN and Alkalinity, Well Location Summary, and Water Level

Report.

The 2004 Sampling Round at Beede Waste Oil Site in Plaistow, New Hampshire has been completed. NHDES personnel collected groundwater samples in June 2004, using the low flow method, peristaltic pumps and dedicated tubing. The weather varied from hot and humid to cold and raining.

VOCs were collected from 59 wells during this round, along with duplicates and trip blanks:

*****				_			
AE-1	AE-21	SH-4S	SH-15S	SH-21S	SH-231	SH-26S	SH-43S
AE-2	AE-22	SH-41	SH-15I	SH-211	SH-23D	SH-27S	SH-44S
AE-4	SH-2S	SH-4D	SH-15D	SH-21D	SH-24S	SH-28S	SH-56S
	SH-2I	SH-12S	SH-19I	SH-22S	SH-241	SH-29S	SH-57S
AE-12	U	•	SH-19D	SH-22D	SH-24D	SH-33S	
AE-14	SH-2D	SH-14S	• • • • • • •	• ===	SH-25S	SH-38S	
AE-17D	SH-3S	SH-14I	SH-20S	SH-22R			WD 44
AE-18S	SH-31	SH-14D	SH-201	SH-23S	SH-251	SH-41S	WP-14
AE-18D	SH-3D		SH-20D		SH-25D		WP-18

In addition, VOCs were collected from surface water surrounding the following 5 well points, which were unable to be sampled using the low flow method. An explanation can be found in the following section.

WP-4

WP-10

WP-12

WP-17

Samples for the natural attenuation parameters consisting of Total Fe, Total Mn, Chloride, Sulfate, Nitrate, TKN and Alkalinity were collected from the following 27 wells:

,,	··-			
AE-2	SH-2S	SH-4S	SH-22S	SH-24S
AE-12	SH-21	SH-41	SH-22D	SH-241
AE-14	SH-2D	SH-4D	SH-22R	SH-24D
AE-17D	SH-3S	SH-15S	SH-23S	SH-43S
AE-18S	SH-31	SH-15I	SH-231	
AE-18D	SH-3D		SH-23D	
/ (

Additional Wells

The following eight well locations were added to this sampling round; tubing was installed and samples were collected.

SH-14S	SH-20S	SH-28S
SH-14I	SH-201	SH-29S
SH-14D	SH-20D	

Wells not sampled:

Five off-site wells were not sampled. WP-4, WP-10, WP-12, WP-15, and WP-17 were in deep water and accessibility was not possible. Instead, surface water samples were taken as close to the well points as possible. These wells will be sampled yearly when accessible.

SH-21

The three wells at SH-21 were added to last year's sampling round. SH-21I and SH-21D were not sampled at that time because the screens were thought to be filled with sand. However, by checking the original well logs and the current well depths, it was found that the screened areas were not filled with sand; tubing was installed and these wells were sampled this round.

SH-24

There is one well, SH-24D, where the water level will not stabilize during low flow sampling, as noted in previous NHDES Sampling Reports. SH-13D has the same issue but was not sampled this round. SH-24D was sampled using the low flow sampling procedure during this sampling round and we will continue to do so unless otherwise notified.

SH-25

Locking well caps were replaced at the three wells at SH-25 (S, I, and D). One of the bolts in SH-25S is stripped and will need to be replaced.

New tubing was installed in many wells to the middle of the screened interval during the 1999 sampling round. Once sampling started, it was discovered that the water levels in the following wells were near or below the middle of the screen, so silicon tubing was used on the pump end to extend the length. These wells are indicated on the well location data sheet with an "X." The correct placement of the tubing in these wells still needs to be decided. I would recommend replacing the tubing if these wells are to be included in a long term monitoring program using peristaltic pumps. I would not recommend moving the tubing each time the well is sampled, as you are disturbing the standing water in the well, which may affect the turbidity and cause longer sampling times. Since the water levels will change over time, the tubing cannot be placed at the center of the saturated screen permanently. We may want to place the tubing a foot off the bottom in all these wells to remain consistent and disturb the wells as little as possible.

ĀE-1	AE-10	AE-21	SH-12S	SH-26S	SH-53S
AE-2	AE-14	AE-22	SH-23S	SH-33S	SH-54S
AE-4	AE-20	SH-3S	SH-24S	SH-43S	SH-57S

BEEDE WASTE OIL SITE - WELL LOCATION DATA - 2004 SAMPLING ROUND

Well #	Depth	Screen	Ш	Water	Length	Plus	Total	Middle	Tubing	Diff	Diff	Comments
	Top of	Length	Ц	Level	Tubing	Extra	# Feet	of	Feet	TOC to	PVC	
	PVC	Feet	Ц		in well	Tubing	Tubing	Screen	off	Ground	to TOC	
		<u> </u>	\vdash	6/1/2004	(POLY)		Cut (POLY)	Yes	Bottom	feet	feet	**=silicone tubing cut
AE-1	24.99	10	x	17.74	19.99	3	22.99	y	5	2.61	0.25	bumpy concrete measuring point
AE-2	21.22	10	x	16.98	16.22	3	19.22	V V	5	2.42	0.26	measured from concrete, ground lower
AE-4	26.95	10	x	21.99	21.95	3	24.95	y	5	2.54	0.14	next to trailer
AE-12	27.77	10	П	19.50	22.77	3	25.77	у	5	2.96	0.11	
AE-14	29.73	10	X	23.17	24.73	3	27.73	У	5	2.77	0.17	
AE-17D	51.22	10	Ц	13.33	46.22	3	49.22	У	5	2.66	1.31	top of casing (14.64ft - 1.31 ft)
AE-18S AE-18D	29.72	10 10	Н	16.63	24.72	3	27.72 53.43	У	5 5	2.32 3.63	0.19	
AE-21	55.43 22.08	10	x	15.03 19.35	50.43 17.08	4	21.08	y y	5	n/a	0.32	roadbox across from trailer
AE-22	24.33	10	x	20.01	19.33	14.07	33.40	y	5	n/a	ground	under trailer
SH-2S	32.38	15	Ĥ	16.78	24.88	3	27.88	ý	7.5	2.91	0.23	
SH-21	47.78	10		17.02	42.78	3	45.78	у	5	3.06	0.15	
SH-2D	69.42	10	Ц	16.68	63.96		63.96	no	5.46	2.85	0.25	3 ft + silicone tubing
SH-3S	28.56	15	X	23.12	21.06	4	25.06	У	7.5	2.51	0.40	
SH-31	54.93 73.58	10 10	H	24.37 24.16	49.93 68.12	3	52.93 68.12	У	5 5.46	2.87 2.56	0.10 0.16	2 A Lailicean tuking
SH-3D SH-4S	29.20	15	H	17.71	21.70	 3	24.70	no v	7.5	2.50	0.18	3 ft + silicone tubing
SH-41	54.90	10	H	20.66	49.90	3	52.90	y	5	3.08	0.13	
SH-4D	73.74	10	П	20.64	68.74	3	71.74	у	5	3.00	0.28	
SH-12S	23.67	15	x	9.49	16.17	3	19.17	У	7.5	2.63	0.27	
SH-14S	22.41	10	Ц	15.89	20		20	У		2.41		2004 depth measured and tubing installed
SH-14I	53.93	10	\sqcup	16.28	48.5		48.5	У	5	2.93		2004 depth measured and tubing installed
SH-14D SH-15S	105.2 15.53	10 10	Н	16.38 5.22	100 10.53	3	100 13.53	y V	5 5	3.20 2.73	0.15	2004 depth measured and tubing installed
SH-155	51.62	10	Н	5.67	46.62	3	49.62	y V	5	3.09	0.15	
H-15D	100.90	10	H	5.71	95.90	3	98.90	v	5	3.23	0.15	
SH-19S	8.75	10		7.62		·						screen sanded ('04 depth measured as 8.85ft)
SH-19I	52.9	10	Ц	7.35	49.35	**4	49.35	no	3.55			
SH-19D	104.36	10	Ц	5.85	98.36	**4	98.36	no	6	0.70		Parties and the second
SH-20S	15.79	10 10	Н	5.34	11		11	У	5 5	3.79		2004 depth measured and tubing installed
SH-201 SH-20D	47.66 86.86	10	Н	3.94 3.89	42 82		42 82	y V	5	2.66 2.86		2004 depth measured and tubing installed 2004 depth measured and tubing installed
SH-21S	20.27	10	Н	15.89	20	**4	20	no	0.27			2004 depth measured and tubing installed
SH-21I**	48.56	10	H	14.58	44.5		44.5	у	4			2004 depth measured and tubing installed
SH-21D**	76.68	10		14.59	72		72	У	5			2004 depth measured and tubing installed
SH-22S	15.77	10	Ц	6.87	10.77	3	13.77	у	5	3.06	0.25	
SH-22D	52.10	10	Н	6.82	47.10	3	50.10	У	5	2.71	0.11	
SH-22R SH-23S	158.52 15.90	101 10	X	6.34 9.07	147.00 10.90	3	150.00 13.90	no v	11.52 5	1.84 2.96	n/a 0.19	about 145 ft BGS
SH-231	37.81	10	H	9.12	32.81	3	35.81	y	5	2.59	0.19	
SH-23D	62.52	10	H	8.95	57.52	3	60.52	y	5	2.97	0.24	
SH-24S	19.74		x	13.56	14.74	4	18.74	y	5	n/a	0.32	roadboxes replaced in spring 2001
SH-241	43.86	10	Ц	13.66	38.86	4	42.86	У	5	n/a		roadboxes replaced in spring 2001
SH-24D	103.78	10	Ц	15.50	98.78	4	102.78	У	5	n/a		roadboxes replaced in spring 2001
SH-25S	23.79	10 10	H	15.98	18.79	**4	18.79	У				2004 - one of the roadbox bolts is stripped
SH-25I SH-25D	59.63 98.31	10	H	17.66 21.04	54.63 93.31	**4	54.63 93.31	y y				
H-26S	21.94	10	x	15.35	16.94	3	19.94	V	5	3.23	0.94	
H-27S	16.24	10	П	8.60	12.24	3	15.24	no	4	3.22	0.06	4 ft from bottom because of water level
H-28S	11.75	10	\Box	2.50	7		7	у	5	,		2004 depth measured and tubing installed
H-29S	11.85	10	Ц	1.51	7		7	у	5			2004 depth measured and tubing installed
H-33S	27.60	10	X	20.31	22.60	4	26.60	У	5	n/a	0.46	roadbox in front building
H-38S	30.16	10 10	${\mathbb H}$	21.22	25.16 10.74	3	28.16 13.74	У	5 5	2.90 2.87	0.21	
H-41S H-43S	15.74 20.63	10	x	8.72 13.67	15.63	3	18.63	y V	5	2.53	0.13	
H-44S	22.71	10	Ĥ	15.09	19.06		19.06	-	3.65		5.55	
H-56S	22.58	10	H	17.44	21.58	3	24.58	no	1			
H-57S	23.78	10	X	19.99	18.78	3	21.78	у	5	3.18	0.20	
VP-4	17.2	1	Ц	in water	Tubing ali					n/a	n/a	
VP-10	11.85	1	Н	in water	Tubing ali					n/a	n/a	A CONTRACTOR OF THE CONTRACTOR
VP-12	17.03	1	Н	in water	Tubing all			_		n/a	n/a	
VP-14 VP-15	16.87 17.13	1	${oldsymbol{ech}}$	0.34	Tubing all Tubing all					n/a n/a	n/a n/a	
VP-15 VP-17	17.13	1	╁	in water in water	Tubing all					n/a n/a	n/a	
VP-17 VP-18	12.06	1	\forall	0.23	Tubing all					n/a	n/a	

Note: X We discovered that the water level was near or below the middle of the screen so we extended the tubing length by using more silicone tubing on the pump end

The tubing is no longer in the middle of the screen. I recommend replacing the tubing if these wells are to be included in a long term monitoring program.

WATER LEVEL DATA AT BEEDE WASTE OIL SITE IN PLAISTOW, NEW HAMPSHIRE

Well # Depth Screen Water Water Water Water Water Water Level <	99 right of trailer 104 108 109 right of trailer 100 107 108 108 109 right of trailer 100 100 100 100 100 100 100 100 100 1
B-10/97 7/98 6/16/99 9/18/00 6/12/01 8/25-26/03 6/11/01 AE-1 24.99 10 19.36 19.01 18.89 18.32 18.76 17. AE-2 21.22 10 18.75 18.26 18.10 17.54 17.98 16. AE-4 26.95 10 23.89 21.72 23.44 23.55 22.69 23.30 21. AE-10 22.14 10 20.18 16.84 19.34 19.32 18.05 19.17 AE-12 27.77 10 21.93 21.18 21.09 19.71 21.04 19. AE-14 29.73 10 24.74 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 15.69 15.38 15.01 15.06 AE-18D 51.22 10 16.04 14.33 1	74 98 99 right of trailer 50 177 133 1.31 ft from toc to tpvc 133 1.31 ft from toc to tpvc 135 15 15 15 15 15 15 15 15 15 15 15 15 15
AE-1 24.99 10 19.36 19.01 18.89 18.32 18.76 17. AE-2 21.22 10 18.75 18.26 18.10 17.54 17.98 16. AE-4 26.95 10 23.89 21.72 23.44 23.55 22.69 23.30 21. AE-10 22.14 10 20.18 16.84 19.34 19.32 18.05 19.17 AE-12 27.77 10 21.93 21.18 21.09 19.71 21.04 19.7 AE-14 29.73 10 24.74 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 15.69 15.38 15.01 15.06 AE-17D 51.22 10 16.04 14.33 14.25 13.88 15.28 13. AE-18D 25.43 10 16.04	74 98 99 right of trailer 50 177 133 1.31 ft from toc to tpvc 133 1.31 ft from toc to tpvc 135 15 15 15 15 15 15 15 15 15 15 15 15 15
AE-2 21.22 10 18.75 18.26 18.10 17.54 17.98 16. AE-4 26.95 10 23.89 21.72 23.44 23.55 22.69 23.30 21. AE-10 22.14 10 20.18 16.84 19.34 19.32 18.05 19.17 AE-12 27.77 10 21.93 21.18 21.09 19.71 21.04 19.3 AE-14 29.73 10 24.74 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 15.69 15.38 15.01 15.06 AE-17D 51.22 10 16.04 14.33 14.25 13.88 15.28 13. AE-18D 29.72 10 17.97 17.92 17.50 17.15 17.24 16. AE-20 23.02 10 17.92	98 right of trailer 50 17 33 1.31 ft from toc to tpvc 33 33 35 55 11 78 92 98 12 97 16
AE-4 26.95 10 23.89 21.72 23.44 23.55 22.69 23.30 21. AE-10 22.14 10 20.18 16.84 19.34 19.32 18.05 19.17 AE-12 27.77 10 21.93 21.18 21.09 19.71 21.04 19. AE-14 29.73 10 24.74 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 15.69 15.38 15.01 15.06 AE-17D 51.22 10 16.04 14.33 14.25 13.88 15.28 13. AE-18S 29.72 10 17.97 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92	night of trailer night of trailer
AE-12 27.77 10 21.93 21.18 21.09 19.71 21.04 19. AE-14 29.73 10 24.74 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 15.69 15.38 15.01 15.06 AE-17D 51.22 10 16.04 14.33 14.25 13.88 15.28 13. AE-18S 29.72 10 17.97 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92 17.49 17.62 15.84 17.35 AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98	33 1.31 ft from toc to tpvc 33 3 5 5 5 6 7 7 7 6 6 6
AE-14 29.73 10 24.74 — 24.36 24.16 23.64 24.03 23. AE-17S 22.48 10 16.02 — 15.69 15.38 15.01 15.06 — AE-17D 51.22 10 16.04 — 14.33 14.25 13.88 15.28 13. AE-18S 29.72 10 17.97 — 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 — 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92 — 17.49 17.62 15.84 17.35 — AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 —	17
AE-17S 22.48 10 16.02 — 15.69 15.38 15.01 15.06 — AE-17D 51.22 10 16.04 — 14.33 14.25 13.88 15.28 13. AE-18S 29.72 10 17.97 — 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 — 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92 — 17.49 17.62 15.84 17.35 — AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 — 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 —	1.31 ft from toc to tpvc 33 33 33 35 35 36 37 36 37 36 37
AE-17D 51.22 10 16.04 14.33 14.25 13.88 15.28 13. AE-18S 29.72 10 17.97 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92 17.49 17.62 15.84 17.35 AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-3S 28.56 15 24.94	33 1.31 ft from toc to tpvc 33 33 33 35 55 511 78 52 53 54 55 54 55 55 55 55 55 55 55 55 55 55
AE-18S 29.72 10 17.97 17.92 17.50 17.15 17.24 16. AE-18D 55.43 10 16.43 16.32 15.91 15.55 15.63 15. AE-20 23.02 10 17.92 17.49 17.62 15.84 17.35 AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-3D 69.42 10 18.3 18.11 17.62 17.28 17.20 18. SH-3I 54.93 10 26.11	03 55 51 78 60 22 58 88 82 22 66
AE-20 23.02 10 17.92 17.49 17.62 15.84 17.35 AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-2D 69.42 10 18.3 18.11 17.62 17.28 17.20 16. SH-3S 28.56 15 24.94 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 <	35 11 18 12 18 18 18 18 18
AE-21 22.08 10 21.45 18.93 20.94 20.86 20.02 20.74 19. AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20. SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-2D 69.42 10 18.3 18.11 17.62 17.28 17.20 16. SH-3S 28.56 15 24.94 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	01
AE-22 24.33 10 21.98 19.43 20.51 21.45 20.73 21.32 20.51 SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-2D 69.42 10 18.3 18.11 17.62 17.28 17.20 16. SH-3S 28.56 15 24.94 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	01
SH-2S 32.38 15 18.16 18.20 17.71 17.39 17.30 16. SH-2I 47.78 10 18.35 18.45 17.95 17.62 17.53 17. SH-2D 69.42 10 18.3 18.11 17.62 17.28 17.20 18. SH-3S 28.56 15 24.94 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	78
SH-2D 69.42 10 18.3 — 18.11 17.62 17.28 17.20 16. SH-3S 28.56 15 24.94 — 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 — 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 — 25.58 25.39 24.73 25.11 24.	58 12 37 16
SH-3S 28.56 15 24.94 24.51 24.47 23.62 24.18 23. SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	12 37 16
SH-3I 54.93 10 26.11 25.71 25.58 24.90 25.31 24. SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	37 16
SH-3D 73.58 10 26.5 25.58 25.39 24.73 25.11 24.	16
SH-4S 29.20 15 19.86 19.34 19.38 17.85 19.15 17.	
SH-4I 54.90 10 22.64 — 22.21 22.15 21.07 21.95 20.	
SH-4D 73.74 10 22.55 — 22.20 22.10 21.08 21.93 20.	
SH-12S 23.67 15 11.29 10.87 19.75 10.13 10.61 9.4 SH-13D 105.88 10 15.2 16.26 15.69 15.41 15.46 14.	
SH-14S 22.41 10 Depth measured in 2004 15.40 15.	
SH-14I 53.93 10 Depth measured in 2004 16.	28
SH-14D 105.2 10 Depth measured in 2004 16.	
SH-15S 15.53 10 6.49 6.54 6.10 5.68 5.78 5.2 SH-15i 51.62 10 7.02 7.03 6.57 6.17 6.22 5.6	
SH-15I 51.62 10 7.02 — 7.03 6.57 6.17 6.22 5.6 SH-15D 100.90 10 9.3 — 7.15 6.56 6.27 6.46 5.7	
SH-19S 8.75 10 Depth measured in 2003 8.22 7.6	
SH-19I 52.90 10 Depth measured in 2003 8.07 7.3	
SH-19D 104.36 10 Depth measured in 2003 7.70 5.8	
SH-20S 15.79 10 Depth measured in 2004 5.3 SH-20I 47.66 10 Depth measured in 2004 3.9	
SH-20D 86.86 10 Depth measured in 2004 3.8	
SH-21S 20.27 10 Depth measured in 2003 16.51 15.	
SH-211 48.56 10 Depth measured in 2003 15.20 14.	
SH-21D 76.68 10 Depth measured in 2003 15.21 14.3 SH-22S 15.77 10 7.99 — 7.93 7.58 7.20 7.56 6.8	
SH-22S 15.77 10 7.99 7.93 7.58 7.20 7.56 6.8	
SH-22R 158.52 101 — 6.29 7.60 7.46 6.67 7.18 6.3	
SH-23S 15.90 10 10.68 — 10.45 10.05 9.41 10.11 9.0	
SH-23I 37.81 10 10.75 — 10.51 10.08 9.40 10.10 9.1	
SH-23D 62.52 10 10.41 10.18 9.85 9.17 9.85 8.9 SH-24S 19.74 10 15.65 14.97 14.95 13.99 14.71 13.9	
SH-24I 43.86 10 15.36 — 14.74 14.65 13.75 CANT FIND 13.0	
SH-24D 103.78 10 17.2 — 17.25 16.74 15.72 16.68 15.	50
SH-25S 23.79 10 Depth measured in 2003 17.23 15.1	
SH-25I 59.63 10 Depth measured in 2003 19.90 17.0 SH-25D 98.31 10 Depth measured in 2003 22.50 21.0	
SH-26S 21.94 10 16.73 — 16.58 16.18 15.80 15.96 15.3	
SH-27S 16.24 10 10 9.83 9.55 9.15 9.30 8.6	
SH-28S 11.75 10 Depth measured in 2004 2.5	
SH-29S 11.85 10 Depth measured in 2004 1.5	
SH-33S 27.60 10 22.61 19.49 21.91 21.85 20.99 21.70 20.3 SH-38S 30.16 10 23.04 22.67 22.47 21.80 22.35 21.3	
SH-41S 15.74 10 10.48 10.07 9.73 9.07 9.60 8.7	
SH-43S 20.63 10 15.02 14.81 14.48 14.14 14.33 13.0	
SH-44S 22.71 10 Depth measured in 2003 15.73 15.0	
SH-53S 22.73 10 — 16.33 19.01 19.02 17.79 18.86 —	
SH-54S 22.66 10 16.7 19.46 19.45 18.17 19.30 SH-56S 22.58 10 n/a 19.05 17.84 18.90 17.4	
SH-57S 23.78 10 19.01 21.55 21.54 20.40 21.40 19.0	
WP-4 17.20 1 n/a n/a 1.19 0.97 1.00 0.87 IN WA	TER
WP-10 11.85 1 n/a n/a 1.08 0.69 0.42 IN WATER IN WA	
WP-12 17.03 1 n/a n/a 0.64 0.15 top coupling IN WATER IN WA	
WP-14 16.87 1 n/a n/a 1.63 1.08 0.79 0.58 0.3 WP-15 17.13 1 n/a n/a 1.32 0.59 0.41 IN WATER IN W	
WP-17 17.48 1 n/a n/a 1.58 1.98 0.86 IN WATER IN WA	
WP-17A 17.24 1 n/a n/a 0.23 n/a n/a	
WP-18 12.06 1 n/a n/a 1.05 0.81 0.25 0.86 0.2	

Job Name Beecle Sampler(s): L. Deswara Well Depth in ft. 94.99 Screen Length in ft. 10	Well I.D. AE-1 Date: 6/15/0\$ Intake set 3 ft. From 6thm	
	Depth to screen from MPft. Transport	

Time	Flow ml/min		S.Conc uS/cm		рН	ORP mv	Turb NTU	WL Feet		1		Pump Speed			
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	18.01	Nov	w	Total	3	G.		
08:49	198	12.3	618	26	5,6	318	41	18.10	0.0	<u>F</u>	0.09				
08:55	200	6.11	607	1.4	5.4	327	41	18.11	0.0	21	0.10				
0905	900	11.2	566	1.2	5.4	258	41		Ø)					
09:15	200	110	455	0.9	55	178	41								
9.25	20 3	1/.0		0.8	5.5	151	41								
19:35	204	11.0	375	0.8	5.6	145	41								
09.45	304	11.1	360	0.8	5.6	141	41								
£1.55	204	11.0	354	3.8	5.6	139	41								
10:00	204	109	353	6.8	5.6	141	41								
10-05	204	10.9	351		5.6	1119	41								
16:10	204	110	351	0.8	5,6	142	21	V		,	V				
10.12	Samo	hel	NV	5				···				K			
				\$					PP-10.						

Tubing Factors
To purge standing water in tubing

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/8" ID

1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede	Well I.D. AE-2
Sampler(s): L. Degmaran	Date: 6.15/44
Well Depth in ft. 21.22	Intake set 1.5 ft. From attorn
Screen Length in ft	Depth to screen from MP
Water Level at Top of PVC or Inner Casing in ft.	17.24 Check here if no inner casing
Initial Water Level used for low flow if different thar	n above in ft Measuring point
Weather: hot, sunny windy	

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	I	Oraw Oown n feet)	Pump Speed		
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	17.21	Now	Total	3,0		
10:36	194	120	580	2.9	5.7	145	1	17.37	0.0	0.03			
1032	194	10.7	484	0.9	5.6	133	41		0				
10:40	py	10,5	336	0.6	5.7	83	-1					11	
<u>i0S0</u>	194	10.5	335	0.6	5,\$	70	4						
11:00	94	10.5	336	0,7	5.8	67	41						
11:10	194	10.5	339	00 Õ	5,7	70	4						
1135	194	10,5	338	0.8	5.7	71	<1						
11:20	194	10.5	340	0,8	5,7		۷١						
11:25	194	10,5	340		5.7		<u> </u>	V	V	V	J/		
11:27	sam	dod	100/1	KITH	VFM	n Alka	linit	Chlin	Wa Su	Kiter N	Mati		
			U	,	1	-17-11-3			, ou				
												·	
												·	
												· · · · · · · · · · · · · · · · · · ·	

Tubing Factors
To purge standing water in tubing

height in feet x = 2.41 = ml needed 1/8" ID

1/4" ID height in feet x = 9.64 = ml needed <u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Sampler(s): Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft. Initial Water Level used for low flow if different than Weather: Not Sunny breezy, humid	Well I.D. AE-4 Date: 6/15/04 Intake set 3.5 ft. From 666 Depth to screen from MP ft. 23.39 Check here if no inner casing above in ft. Measuring point
Constant stream of small bubble	from well to tubing to sende

		T	T	T	Т	T	- T	 				1
Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU		D	raw own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	32.29	Now	Total	3.0	
13.21	90	14.9	471	2.2	6,4	-14	14	223	0.07	0.07		lots of bubble
13:25	191	13.5	462	1.1	6.3	-17	10		Ø			inside tubing
13:35	194	13.3	446	0.8	6,2	-13	8		i			
3:45	94	13.0	441	0,8	6.0	-13	10					
13:55	194	13.2	433	0.7	6,1	-10	10					
14:00	194	13.7	432	0,7	6.1	-13	9					
4:05	192	13.3	431	0,7	6.1	-13	9					
4:10	192	13.2	430	F10	6.1	-14	9		1		1/	
14112	Dam	did	1/x	10(s			- '-				¥	
			0									
					-							
Cubing E												

Tubing Factors
To purge standing water in tubing

height in feet x/2.41 = ml needed 1/8" ID

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Canada	feet feet 19.5	Well I.D Date: Intake set Depth to screen f	rom MP	tt. e if no inner casing
Sampled for UDG, Alkalining, So tubing has a lot in bubbles	itch no	LAK, Chluide	, TKN,	Fc ma

Time	Flow ml/min		S.Cond uS/cm	1	рН	ORP	Turb		D	raw own feet)	Pum _l Speed	•	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	19.52	Now	Total	3		***
19:40	188	14	122	4.3	5.4	272	4	1959	.07	07			
12:45	190	12	110	8.6	5.3	298	4	1958		.06			
:9:22	188	12	109	2.9	5.3	304	4	19.58	0	1			
13:05	189	12	105	2.9	5.3	307	41	1958					_
13:15	189	12	107	2.6	5,2	309	4	19.59	,01	,07			
13,92	189	12	100	2,3	5.3	2,29	41	19.59	0				
13:35	189	1)	97	2.0	5.	334	41	19.59					
13:45	189	1>	97	1,9	5,入	337	ا	19.59					4
13,50	199	12	97	1.9	5.7	335	4	19.59					+
13:55	164	12	97	1.9	5.2	336	4	19.59					1
14'00	Samo	by 6	1 400	s-eh	·Cal	y Ab	2 .)		•				
													1
													1
			i										
										$\neg \uparrow$			

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x = 2.41 = mi needed

1/4" ID height in feet x = 9.64 = mi needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Samplers: Well Depth Screen Length Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if different the Weather: Swary + McT	Depth to screen from MP ft. Check here if no inner casing
Sampled Ry 1813, Attention	Sulfate, Chalmany W. Hoffe, TKN, Forms

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WL Feet	Do			Comments
Stabil	zation	3%	3%	10%	0.1	+/- 10	10%	2353	Now	Total	3	
13:18	174	12	76	7.9	6.3	191	4	23.54	.01	Ül	1	
13:83	174	17	7.7	7.5	59	237	41	23.54	0	1		
3:30	170	12	7).	77	59	256	4	2354				
3140	170	12	70	7.5	5.8	271	41	2354				
13:45	174	12	69	21	5.8	278	Ly	23.54				
13:50	174	12	69	7,6	5,8	スひ	41	2354	1			
3'.55	174	12	69	7.6	5.8	X	41	259	-(1	1	
G0!Y	Sam	Please								·	•	
141.05		elil	امرا	cake								
				-								

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name	Well I.D. $AE-17D$
Sampler(s): L. Desmarais	Date: $\frac{1080^{\circ}}{10}$
Well Depth in ft. 51,22	Intake set S ft. From buttom
Screen Length in ft	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft	13.15 Check here if no inner casing
Initial Water Level used for low flow if different that	<u> </u>
Weather: Not Sunny, breezy	
, , ,	
Screen Length in ft Normal Water Level at Top of PVC or Inner Casing in ft	Depth to screen from MP ft. 13.15 Check here if no inner casing

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	raw own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	14.78	Now	Total	37	
1244	200	12.7	144	3,3	6,4	125	2	14.82	0,04	0.04		
12,50	200	12.2	133	1,7	5,9	186	41		Ø			
13:00	200	12,2	141	1.1	5.9	195	41		/-			
13:10	200	12.2	145	0.9	5,9	189	4/					
13:20	300	12.1	147	0.7	5.9	18D	2					
13:30	300	12.4	148	0,6	5.9	161	۷)					
3.40	200	12.7	147	0,6	59	178	4					
13:45	200	12.2	149	0.6	5,9	179	41			`		
1350	300	12.2	149	0.4	59	179	41					
3.55	20	12-2	150	0,5	59	178	۷(1		1	,\/	
400	Same	ted 1	av V0	(s Fe	MnJ	KNA	Kalmi	n (hla	nde S	ulfate	Mont	
	•)"		('			(,			

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beule		Well I.D.	AE-185
Samplers: 5 Pukus		Date:	67/04
Well Depth	feet	Intake set $<$	ft. From borrow
Screen Length10	feet	Depth to screen	from MP
Water Level at Top of PVC or Inner Casing		1675	_ Check here if no inner casing
Initial Water Level used for low flow if diffe	erent than al	pove 1, 9/2	Measuring point
Weather: Sung + wann		16 10	
,			
So de A Coulde Augustin		- I	
Sampled her UDG, AIKALMIN, Ch	lotide 3	itale whate	TKN Ferm
			,

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU		Do	raw Own feet)	Pump Speed	
Stabil	zation	3%	3%	10%	0.1	+/- 10	10%	1696	Now	Total	3	
12.57	190	12	260	27	67	-71		16.47		.01		Lots of Orange block geing
13:02	192	11	269	1.2	6.7	-83		1697	0			
13:10	194	12	376	1.0	6.7	-93	15	1647				
13:20	193	11	282	0.7	6.7	-103	8	1697				
13:30	193	11	287	0.4	6:7	~104	4	16.97				
13.35	194	11	186	0.4	6.7	-10)	3	1697				
131.40	194		086	0.3	67	- 99	3	1697				
13'45	193	11	280	0.4	6.7	-101	3	1697				
13:50	194	11	186	0.4	6.7	-100	3	16.47		V		
131.55	Sun	polish										
<u> </u>												
				-								
uhing Faa												

Tubing Factors

To purge standing water in tubing 1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed <u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede Samplers: 5. ferkins Well Depth 55.43 fe	Well I.D. <u>AE-18 d</u> Date: <u>6/7/04</u>
CI	eet Intake set 5 ft. From bortom
	eet Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing	Check here if no inner casing
Initial Water Level used for low flow if different	than above 15.67 Measuring point 700
Weather: Sman & WAM	
C	
Sampled by UUG Alkaling	Chloride Surface Whate TKN Fe+ma.
, , , , , , , , , , , , , , , , , , ,	Joseph Marty Transfer of the t

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	1	De	raw own feet)			mp eed	i .
Stabili	zation	3%	3%	10%	0.1	+/- 10	10%	15.67	Now	Tota	al	<u></u>	3	
M.M	191	14	187	7.0	7.0	-30	4	15.45	3£.	198	,		1	
M:33	193	15	187	2.5	1,4	-103	4	15.97						
14.35	192	12	188	0.6	7.6	-134	21	15.97	0					
14:45	193	12	188	0.5	7.7	-136	4	15.97						
14,52	193	12	181	0.4	7.7	- 135	4	15.97						
15'.00	193	12	188	0.4	7.7	-136	4	15.97						
15:00	143	12	188	0.4	7.7	-135	4	15.97	\downarrow	J	4	V		
15:05	San	ply	4								I			
				·										
Cubing Fac														

Tubing Factors
To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

MIDES WEILSAMPHING WOLKSHEEL

Job Name Sampler(s): 5, Perkys Well Depth in ft. 23.02 Screen Length in ft. 10	Well I.D. $AE-2I$ Date: $6/16/0^{2}I$ Intake set 9 ft. From 905100 Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft_ Initial Water Level in ft. used for low flow if different to Weather:	than above 31.90 Measuring point day of Toble

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Do	aw Own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	21.90	Now	Total	3	
10:38	180	13	88	10.1	5.7	330	41	21.91	,01	.01		
10'.43	681	11	76	9.9	5.4	351	41	2191	0			
10:50	184	17	71	10.2	5.3	355	4	21.91				
11:00	184	11	83	10,3	53	359	41	21.91				
11:10	184	11	69	10.4	5,}	365	4	21.91				
11,15	184	1)	69	10,5	5,3	364	۷)	2191				
מצייון	154	<u>jj</u>	69	10.4	5.3	365	4	21.91	4	7	-	
11.95	Sun	plui	fw y	Ols o	الم							
					V							
			-									
			_									

Tubing Factors

To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

θ and ϵ	A
Job Name Belde	Well I.D. <u>A∈-22</u>
Sampler(s): L. Dismorraio	Date: $\int \int $
Well Depth in ft. 24,33	Intake set 0.5 ft. From wolfern
Screen Length in ft.	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 34-75 Measuring point by W
Weather: hot Sunny	
)	

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	,		Do	Draw Down (in feet)		Down		Down		ump peed			
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	ale.	75	Now	Total	12	> 0							
11:09	182	(3.)	439	g. g	51	459	2	•		020	6.20									
11:07	184	13.3	445	8.3	5.0	408	2	j		Ø					-					
11.20	184	12.0	463	7.8	4,9	419	<1													
11:30	184	i2.4	482	7.7	5.0	421	< 1													
11:35	124	12.2	494		5,0	415	41													
11:40	184	121	494	7.5	5.0	415	41													
1145	184	12.3	493	4.5	5.0	416	41	4	/	\bigvee	V									
11:47	184 ,sam	ded	Lor 1	10Cs																
			0																	
														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
									1											

Tubing Factors
To purge standing water in tubing
1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Sampler(s): Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft. Initial Water Level used for low flow if different than a Weather: Jacob Name 32.38 L. Destruction Weather Level used for Inner Casing in ft. Weather: Jacob Name 32.38 L. Destruction Weather Level used for Inner Casing in ft. Weather: Jacob Name 32.38 L. Destruction Weather Level used for Inner Casing in ft. Weather: Jacob Name 32.38 L. Destruction Weather Level used for Inner Casing in ft. Inner Level used for Inner Casing in ft. Weather: Jacob Name 32.38 Screen Length in ft. Value Name Weather: Jacob Name 1.08 Jacob Name 2.08 Jacob Name 2.08	Well I.D. SH-QS Date: 6/6/64 Intake set 7.5 ft. From MP Depth to screen from MP Check here if no above in ft. Measuring po	ft. inner casing

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	Draw Down (in feet)		
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	16.95	Now	Total	3.0	
10:21	174	11.5	35	5.8	6.9	124	5	17.00	0.05	0.05		
10:36	178	10.9	33	7.1	6.5	164	3		Ø			
10:40		10.9	31	8.8	6.2	194	<1		LÍ			
10:50	178	10.7	28	9,0	611	176	21					
:100	178	10.6	30	9,0	6.1	172	<i>41</i>					
11:05	178	10.8	31	9.0	6.0	172	41					
11:10	178	10.6	31	9.0	6.0	174	4					
11:15	178	10.8	31	8.9	6,0	175	41				/	
11:19	San	ded ,	Kir V	OCs T	KN, F	e Mn	AlVelly	wh Ch	lundel	in Festy	Mate	
									,			

Tubing Factors

To purge standing water in tubing 1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Sampler(s): L. Desmarais Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft. Initial Water Level used for low flow if different than Weather: Warm Sunna	Well I.D. SH - 2 I Date: 6/8/04 Intake set 5 ft. From 6 ft. Depth to screen from MP ft. 7 2 Check here if no inner casing above in ft. Measuring point

Time	Flow ml/mir		S.Conc uS/cm		pН	ORP mv	Turb NTU	1	t I	Draw Down in feet)	Pump Speed	
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	17.2	Now	Total	30	
11:35	190	11.4	255	1,1	6,2	43	1		Ø	Ø		
11:30	190	11.4	265	0.6	6.3	4	1					
11:40	190	11.6	268	0,4	6.4	-5	41					
11:45	190	11.6	264	0,4	6.4	-5	<1					went to 5 min, reading
11:50	190	η. 5	252	0,4	6.3	7	41					but S.C. and ORP
1200	190	اأراه	230	0.6	6,3	23	41					77.14
OKEI	190	11.3	333	0,6	6.3	34	۷)					
13.15	90	11.5	334	0.0	6.3	35	41					
12:20	90	11.4	225	0.6	6.3	35	41					
13:25	190	11.6	755	0.6	6.3	36	41	\bigvee	V	1		
12:28	samp	led for	n VOX	STYN	FPMn	Avala	uty.	in Hate	Chlo	indo. M	treite	
		<u> </u>					"					

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Reede	Well I.D. SH-2D	
Sampler(s): L. Desmarais	Date: 6/8/04	
Well Depth in ft. 69.42	Intake set 5.46 ft. From bottom	
Screen Length in ft	Depth to screen from MP ft.	
Water Level at Top of PVC or Inner Casing in ft.	10.73 Check here if no inner casing	
Initial Water Level used for low flow if different than a	bove in ft. Measuring point	
Weather: Warm, Sunny		

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	Draw Down (in feet)		imp beed			
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	16.73	Now	Total	3	.0			
09:02	174	11.3	175	3.3	7.2	266	41	17.10	0.37	037					
09:67	176	10.5	162	1,4	7.3	263	41	17.14	0.04	0.41					
08.90	178	10.7	161	0.7	7.6	183	۷\		φ						
09:30	182	108	159	0.7	7.7	104	21								
09:40	183	10.8	159	0.7	7.8	41	41								
09:50	184	10.8	159	0.6	7.8	34	-1		1						
10.00	184	10.8	159	0.6	7.9	-27	41		1				FB.0		
1009	184	10.9	159	ماره_	7.9	-27	41			`					
10:10	184	109	159	0.6	79	-27	41								
10:15	184	10.9	159	0.6	79	-28	۱ -		\downarrow		1	/		.,	
8100	mp	led for	~ V0	Cs. Th	1.Fe/	In Aka	linik,	chlind	o In lan	K-M7	at	í			
					<u>.</u>		-								
				-											
												-			
								İ							
				1	i										

Tubing Factors
To purge standing water in tubing

1/8" ID 1/4" ID height in feet x = 2.41 = ml needed

height in feet x = 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Belde		Well I.D.	54-35
Samplers: S. Pukus		Date:	617/04
Well Depth 38.56	- feet	Intake set 2.5	
Screen Length \$ 15	feet	Depth to screen	
Water Level at Top of PVC or Inner Casing		22.31	Check here if no inner casing
Initial Water Level used for low flow if differen	t than abov	e_23,63	Measuring point_70 c
Weather: Mostly closery + cool			
Sampled for VOCS, Alkalinh, Chile	riche Su	Ifak N. hate	TKU Fe MA
		, ,	

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU		/L eet	Do	raw Own feet)		Pum Speed	
Stabili	ization	3%	3%	10%	0.1	+/- 10	10%	23	63	Now	Tota	ıl	3	
9:11	160	g	58	9.7	1	วาร	را	ı		.05	1	- 1	i	sume orange bluck came
9:16	166	9	٥.	7.8	5.8	287	1		કે		(The state of the s
9:25	170	q	زيا	75	5.8	289	4			1		İ		
9:35	169	G	\mathcal{Y}	7.3	518	302	41							
9:40	יוו	q	20	7.2	59	304	41							
9:45	169	9	20	7.2	5.4	306	41							
9.50	170	G	50	7.2	5.9	308	4	V		+	V		T	
9:55	170 Sam	clist												
											. 2012			
					•									
ubing Fac														

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Samplers: 5. PLAKINS Well Depth 54. 93 Screen Length Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if different Weather: MOSTLY Chary 1 Carl	feet feet 24.4 nt than abov	Depth to screen		60Hm ft.
Sampled for Wi, Alkalin	ty, Chlor	ride, Salfafe,	Lintrak	TKA! Fet M

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	1	Do	raw OWI feet	1	1	mp eed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	2448	Now	То	tal	3		
10:04	173	9	143	58	6.1	32k	1	34.52	.04	.0	4			
10:09	176	9	141	2.7	6.1	315		34.52	ļ					
10.20	174	10	140	1.1	6.1	290	<1	34.53						going through
10:30	175	6	140	i.v	6.1	220	4	24.52						
10:40	174	10	142	0.8	6.2	180	4	24.52						
10:20	175	9	141	0.8	6.1	164	ا لا	24.52						
10:00	174	10	141	0.8	6.2	153	41	3 4.52						
11:05	176	10	141	0.8	6.2	151	4)	24.52						
11:10	175	10	141	0.8		149	41	24.52						
11:15	175	10	141	0.8	6.2	147	I	24.52	V	1	,	Ĵ		
11:20	Sum	Med												
											\top		\top	
											1			

Tubing Factors
To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Samplers: Well Depth 73.58 Screen Length Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if differe Weather: MOSTIN (10-04 + Cord	feet _ feet 	Depth to screen	SH-3A 617104 5.46 ft. From 61700 en from MP ft. Check here if no inner casing Measuring point to C
Sampled Go VULS, AIKELINA,	Chloride,	Sultate, N	itale, TKN, Fr+m.

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	D	raw Own feet)	Pump Speed	į .
Stabil	zation	3%	3%	10%	0.1	+/- 10	10%	24.47	Now	Total	2	
11:31	108	10	126	5.8	1,3	0	3	25.08	0.61	0.61		
1:36	117	9	125	3. 8	7.4	-78	7	25.40				
11:45	96	10	125	1.2	7.4	-50	3	25.47				,
11:22	FG	10	192	1.0	7.4	-04	2	25.46	7.01			
5,05	90	10	192	8.0	1.3	-59		25.45	4.01	.98		
3.15	89	10	192	0.8	7.4	-74		35.YS		1		
3.30	89	10	132	80	7.4	-70		25.45				
335	90	10	192	0.8	7.4	-73	1.	25.45				
2:30	90	10	132	0.8	7.4	-71	-	25.45				
3:35	89	10	195	0.8	7.4	-73	j	25.45				
2:40	Sam	plul										
		-										
oing Fact purge sta ' ID	ors Inding wa height in f	ter in tub	oing 41 = ml ne	eded		Stabiliz	ation = v	when 3 co	onsecu e stabi	tive rea lization	dings, tal limits lis	ken at 3 - 5 minute intervals, are ted above.

MIDES Wen Sampling Worksneet

Job NameBelde	Well I.D. \$4-45
Sampler(s): 5, Pukins	Date: 6/8/p4
Well Depth in ft. 29,20	Intake set 2.5 ft. From borbon
Screen Length in ft. Sp. +6 15	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft_	(7.77) Check here if no inner casing
Initial Water Level in ft. used for low flow if diffe	erent than above 17.93 Measuring point 706
Weather: Suny + wan	31
Sampled for VUCS ALCALALAS	in Ifale Chalmaide MADON The To man
) 1115-611711-9	WHATE THE PENN
	is Ifale, Chloride, Witrate, Tikn, Fe, mn

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU		Do	raw Own feet)		ımp	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	17.43	Now	Total		3	
8:53	180	11	65	8.4	5.7	253	3	1294	.0)	.01			marge block came through
8.58	182	9	50	6.8	5.4	284	4	1794	0	,01			
9:10	188	9	53	5.7	5.4	279	4	p.93	.t.01	0			
9120	191	7	54	5.4	5.5	255	4	17.43	0	l			
9:30	192	9	55	5,2	5.5	247	41	1793					
9:35	142	9	56	2،۲	5.5	245	41	17.43					
9:40	192	9	56	5.2	5,5	246	4	1793			3		
9:45	San	rely	l			<u>.</u>							
											,		
Fuhing Fac													

Tubing Factors
To purge standing water in tubing

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/8" ID 1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

MIDES wen sampling worksneet

Job Name Bude	Well I.D <i>SH-YI</i>	
Sampler(s): 5, Pan Kins	Date: 6/8/01	
Well Depth in ft. 59.40	Intake set 5 ft. From bottom	
Screen Length in ft	Depth to screen from MP ft.	
Water Level at Top of PVC or Inner Casing in ft	20.79 Check here if no inner casing	
Initial Water Level in ft. used for low flow if different	it than above $\frac{20.44}{1}$ Measuring point TDC	
Weather: Snny + wam		
,		
almost Abre to sample before the flock co	ame in strams, Impossible to emply out	
flow through (11)	,	
flow through (1) Sampley for VOC, Alkalish, Chilaride	e, Sufate, Nitrate TKN FC+mn	

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	1	Do	aw own feet)	Pump Speed	4
Stabili	zation	3%	3%	10%	0.1	+/- 10	10%	20.94	Now	Total	3	
9:55	180	1)	161	65	6.7	235	143	20.99	.05	105	ĺ	Some arange black coming
10:00	183	10	161	3.6	6.8	231	ſ	21.01				
10,10	-681	1)	163	2.8	6.8	159	_	21.01	ĺ			
10'.30	183	11	163	2.7	69	104	9	21.01	1			
10:30	183	1)	163	9.7	6.8	107	6	21.01				
10:40	182	11	162	2.6	6.8	109	6	21.01				
10',50	183	11	161	2.5	6.8	103	8	alol				
10:55	182	11	161	2.4	6.8	104	24	ZIDI				lots of orange black !!
11:05	180	11	161	2.3	6.8	105	36	21.01				
11:15	180	11	160	2.4	6.8	107	85	31.01				Steady streams of onlinge
11:30	187	11	159	2.3	6.8	124	324	21.01				Steady streams of onlinge flock coming through. Some as last year, but not its bad
11:40	181	1)	159	2.3	6.8	134	54	21.01				
11:20	187	1)	160	2.2	6.8	110	9	21.01	C	1	4	
11:22	181	1)	159	2.2	8.3	104	7	21.01				
19:00	Shr	plin										2 hour Limit

Tubing Factors
To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NADES WEII Sampling Worksneet

Job Name Sampler(s): S. Perkins Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft	Well I.D. SH-41 Date: 6/8/04 Intake set 5 ft. From 60110M Depth to screen from MP ft. 20.79 Check here if no inner casing
Initial Water Level in ft. used for low flow if different Weather:	nt than above 11.01 Measuring point TOC
Weather Anny + WANN	

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	1	D	raw own feet)	Pum Spee	-
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	21.01	Now	Total	3	
12:09	192	12	205	29	7.5	164	2	21.42				
12:14	194	į١	209	1.3	8.8	116	2	2144				
12:25	190		211	8.0	8.9	-99	1	21.44				
12:35	192	11	208	0.6	8.5	-217	1	2144				
12:45	191	1)	206	0.4	8.4	-220		21.49				
12:50	190	11	207	0.4	8.	-930		21.44				
13.55	191	11	207	0.4	8.	-970		21.44	J		1/	
131.00	Sum	alu										

Tubing Factors

To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beale	Well I.D. 5#-125
Sampler(s): L. Desmaras	Date: 6/15/04
Well Depth in ft. 26	Intake set ft. From
Screen Length in ft. 15	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	9,70 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 0,11 Measuring point 77/
Weather: not humid, sunny	To the state of th
Weather: hot humid, sunny	above in it. 10.11 Measuring point 100

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	raw Own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	10,11	Now	Total	3.0	
11:45	910	14,3	712	6.2	5.8	141	3	10.11	Ø	Ø		
11:50	310	12.6	787	6.2	5.7	187	1	10.13	0.01	0,01		
12:05	206	12.2	901	7.3	5,6	247	<1		Ø			
12:15	<i>3</i> 08	12,3	992	7.4	5.6	263	21					
12:25	ଛ୦୫	12,1	944	7,7	5.6	254	<					
12/35	200	12.1	960	7.9	5.6	238	2					
1240	<i>3</i> 08	1.2.1	962	7,9	5.6	931	41					
12:45	909	12.1	962	7.9	5.6	230	41			`		
15.20	228	12.0	970	8.0	5.6	229	4)					S.Cand went 'T
12.55	200	11.7	973	8ं।	56	234	41		!			
13:00	නති	11.9	973	8.1	56	234	41	J	-			
13:05	same	oled &	Rin VI	Xs								
1308	sam	pled	dup	<i>reat</i>								
			'									

Tubing Factors
To purge standing water in tubing

1/8" ID

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Samplers: Si Pakins Well Depth Depth Depth Screen Length Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if different than a Weather: Samplers: Si Pakins feet Feet Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if different than a Weather: Single Feet Weather: Single Feet Weather: Single Feet Weather: Single Feet Single Feet Single Feet Single Feet Weather: Single Feet S	Well I.D. SH-145 Date: 6/5/65 Intake set 20 ft. From by pvc Depth to screen from MP ft. 16.10 Check here if no inner casing above 16.49 Measuring point 10C.

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm		pН	ORP mv	Turt NTU	1	D	raw own feet)	Pump Speed	Comments
Stabili	zation	3%	3%	10%	0.1	+/- 10	10%	16.49	 	Total	12	
11,10	208	12	64	9.9	6.1	165	4	16.49		 	3	
11:15	210	11	59	<i>(</i>	5.9	202	4		0	0		
1525	210	1)	52	10.2	_	145	4	16.49				
11:35	210	11				260		1649	+			
1:45	210	11	<u>- </u>			270	4	16.49	+	+		
1,20	210	11	Λ- T		10.6	カシ			+			
1:55	210	11	11.0		7.	774 P	1	16.49	++	++	-	
11,00	210	11	<u> </u>		1	5)6	C1	1649	-	1,1		
كن، د	Samo	elid		136	24			16.49	<u> </u>	4	Ψ	
					101							
							-					
						_						
										+		
					+		_		+			
				+	+	-	_	-	+			
				+	-		_	-	+	-		
				_	+-	-		_		_		
			-		+-	-	+					
Factors	ing water		 _		<u> </u>							5 minute intervals, are

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Samplers: Samplers: Selection Samplers: Selection Samplers: Selection Samplers: Selection Samplers: Selection S	feet _ feet /Leent than above	Depth to sci	ft. e it no inner casing ag point 70 C

THE BOTTOM DESIGNATION OF THE PROPERTY OF THE

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	}	De	raw own feet)	Pum _l Speed	·	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	1663	Now	Total	3		
16:01	199	12	389	4.4	6.8	16	4	16.63	0	0	i		
10:26	202	11	480	1.6	6.3	14	4	1613	1				
10:40	204	11	498	0.5	6.3	3	4	1663					
10:50	206	H	503	0.5	6.3	-1	41	16.64	.0)	101			
10/2	205	1)	503	0.5	6.3	0	41	16.64	D	1			
11:00	305	11	SOS	6.5	6.3	-1	4	16.64	0	1	0		
11:05	Sun	slui	h	زالال	inh								
					7								
											-		

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" 1D height in feet x = 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Bude		Well I.D.	st-14 d
Samplers: 5 Perkins		Date:	6/15/04
Well Depth	feet	Intake set 100	ft. From _ta/c
Screen Length	feet	Depth to screen	n from MP
Water Level at Top of PVC or Inner Casing		16.64	Check here if no inner casing
Initial Water Level used for low flow if diffe	rent than abov	/e	Measuring point
Weather: 5my + warn humis			
		178-	
	7,000		

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	i	Do	aw own feet)	Pump Speed	}
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	16.64	Now	Total	3	
8:38	186	15	1387	9.0	7.5	191	4	17.45	.51	.81		
8:43	190	12	1388	2.6	7.4	200	5	18:50	1.05	1.86	1.4	
8150	94	12	1404	1.6	7.4	158	6	18.85	,35	121	1.2	
(1:00	84	13	1419] -]	7.5	121	ŋ	18.96	-11	1.32	1.0	
9:10	74	14	1424	1.0	7.5	80	5	18.88	t.08	1,24	1.0	
9:20	74	14	1403	1.0	7.5	37	4	1883	†05	1.19	1.1	
1:30	37	13	1427	09	7.5	13	4	1890	.07	1.26	1.1	
4.40	83	14	1429	0,9	7.5	10	4	18.93	,03	1.09	1.0	
9:50	78	14	1430	0,8	7.6	- £	3	15.91	102	1.27	Ì	
10:00	79	14	1431	0.8	7.5	-11	3	18.91				
10:05	79	14	1431	8.0	7.5	-13	3	1891				i
10,10	79	14	1431	8.0	7.5	-15	3	1891		7)	\downarrow	
10,15	Sum	led	for UV	() an	h					70		
		•		-	'							

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x/2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Sampler(s): Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft. Initial Water Level used for low flow if different than Weather: Warm, Party Surmy	Well I.D. SH-15S Date: 6/7/04 Intake set 5 ft. From 6.70 Depth to screen from MP ft. S.36 Check here if no inner casing above in ft. Measuring point

Time	Flow ml/mir		S.Cond uS/cm		рН	ORP mv	Turb NTU	1	- 1	D	raw own feet)		Pump Speed
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	5.36	N	ow	Total		 3. Ù
12:46	300	15.0	304	1,6	6.1	108	1.5	537	0	(O)	0.01		1
12:51	202	11.8	327	0.5	6.1	118	3			Ø			
1300	206	11.6	318	0.5	60	103	41						
13:10	204	13.0	292	0.5	6.1	75	2						
13:20	204	19.0	232	0,4	6.1	70	21						
13:30	206	B'D	214	0.3	6,1	73	4						
13:35	ado	121	211	0.3	6.1	75	41						
1340	206	12.1	209	0.3	6.1	75	4						
1345	200	12.1	209	03	6.1	75	-1	J			V	V	
13:47	San	pled	for VOX	S. Fell	Mr.Al	almity	SULF	to On	lun	D.	W. Mi	ti	TKN
										7		1	
-													

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede	Well I.D. 15 T
Sampler(s): L. Desmarajs	Date: 6/7104
Well Depth in ft. 51.62	Intake set 5 ft. From 12 ft.
Screen Length in ft. 10	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	5.79 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. Measuring point
Weather: COOI, overcast -7 partly runny	

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WI Fee		Do	raw)wn feet)	- <u> </u>	1	ump peed	1
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	5.74		Now	Total		3	,D	
09:25	174	10,3	1349	10.3	6.6	231	21	5.81		0,07	0.0	ጉ ጉ			
VG:30	180	9,9	1124	4,4	نا، با	2 3h	41			Ø	1				
07.40	180	8.9	1099	4.0	6.6	230	41								
09:50	184	9.9	طامالا	4.4	6.6	246	41								
10:00	190	9,9	1346	4.8	6.5	263	۷,								
10:10	190	9.9	1333	5.1	6.5	278	4								
१०३८	190	9.9	1404	5,4	6.5	<i>985</i>	41								
10:30	PO	10.0	1453	5.6	6.4	281	4								
10:40	90	10.0	1492	<i>5</i> .8	6.4	303	41								
10:50	190	10.0	1505	59	6,4	191	41								
1100	190	10.0	1527	6.0	64	194	41								
01:11	190	10.1	1537	6.1	6.4	195	41								0
11:30	90	10,1	558	611	6,14	196	4	\perp					1	/	offer stabilized
11.22	Samo	red f	or VOK	i Fe M	In Albe	linity	Chlark	le Sul	ŕ	A H	ita	He	<u> </u>		Rlimit
				1'			` .			,	Ī	H	V		

Tubing Factors

To purge standing water in tubing

1/8" ID

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed $1.4^{\rm o}~{\rm 1D}$

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede	Well I.D. SH.15D
Sampler(s): L. Desmarais	Date: 6/7/04
Well Depth in ft. 100.90	Intake set 5 ft. From bottom
Screen Length in ft	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft. 5	(X) Check here if no inner casing
Initial Water Level used for low flow if different than a	bove in ft. Measuring point
Weather: Cool partly sunny & warm, most	ly Junny

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	aw own feet)	Pump Speed	ł
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	581	Now	Total	ψ, B	H-
11:38	<i>()</i>	13.5	30%	4.8	7.3	209	۷١	6.32	0.51	8.51		
1133	W	13.1	291	8.6	7.3	72	41	655	0. 23	0.74		11.37
11.43	22	13.2	878	2.4	7.5	-57	4	6.49	70:06	0.68	\bigvee	atució smallost
1153	24	15.0	272	2.6	7,5	-39	41	6.42	t0.07	0.61	0.4	,
203	30	15.3	275	2.1	7.6	-72	41	6.45	0.03	0.64	0.2	
12 13	28	15.1	270	1.7	7.6	-88	41		Ø	1		
12 23	28	15.4	308	1.7	7.7	-90	41					
12.28	28	15.4	268	1,7	7.7	-91	41					
333	28	15.5	267	1.7	7.7	-88	41					
12:35	28	15,6	267	1.7	47	-90	41	\downarrow		\downarrow		
2:42	Samp	led of	Ker VO	Com	ly				,			
			<i>'</i>		0							

Tubing Factors

To purge standing water in tubing $1/8^{\circ}$ ID height in feet = x/2.41 = mI needed 1/8" ID 1/4" ID

height in feet x = 9.64 = ml needed

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Blede	Well I.D. SH-19 I
Sampler(s): L. Deomarais	Date: (3)10)04
Well Depth in ft. 5290	Intake set 35 ft. From hottom
Screen Length in ft	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	7.50 Check here if no inner casing
Initial Water Level used for low flow if different thar	above in ft. Measuring point
Weather: Cool, Cloudy	
()	

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WL Feet	Do	raw)wn feet)	Pump Speed		
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	7.50	Now	Total	30		
12:38	200	12,5	197	11.0	6.5	332	4	7.50		ø			
12:43	302	11.1	256	10.1	6.3	344	4	7.51	6.01	0.01			
12:55	302	6.11	303	9,8	6.3	349	41		ϕ	Ì			
3:05	303	11.3	363	9.8	6.3	334	4					-	
310	303	11.1	300	9,8	6.3	340	۷1						
3.15	202]1.]	396	9.7	6.3	346	۷)						
320	307	11.3	295	9.7	63	349	41						
3,25	207	11.3	295	97	6.3	349	4	4/	1	√	<u> </u>		
3,27	Dâm	oleol	fur V	CC									
			0										
	-	-											

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beale	Well I.D. SH-19D
Sampler(s): L-Desmaran	Date: 6/10/04
Well Depth in ft. 104.36	Intake set 6 ft. From bottom
Screen Length in ft.	Depth to screen from MP
	Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. Measuring point
Weather: Gool, partly Sunny	
J	

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WL Feet	D	raw own feet)	Pump Speed
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	6,23	Now	Total	2.5
13:30	172	12.0	130	6.8	7.1	304	1	6,40	0,17	0,17	1
13:35	1 7 4	11,3	126	4,0	7.3	312	1	6,44	0.64	0,21	2,3
B45	160	11,3	iz5	1.2	4.8	296	41	6,45	0.01	6.22	Ì
13:56	160	11.3	124	1,7	7.9	293			ø		
13:55	160	11.3	124	1.0	7.9	294	41				
14:00	160	11.4	124	1.0	7.9	294	41		1	1	
14:02	San	pled	for	VOCs							
										`	
											-
					-						
									-		
											-

Tubing Factors

To purge standing water in tubing
1/8" ID height in feet x 2.41 = ml needed
1/4" ID height in feet x 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Blede Well I.D. SH-205	
Sampler(s): L. Desminois Date: Lipiou	
Well Depth in ft. 15.79 (Margued 2004) Intake set ft From	
Screen Length in ft. (1) Depth to screen from MD	
Water Level at Top of PVC or Inner Casing in ft. 5.48 Check here if no inner casing	
Measuring point Toc	
Weather: Warm, humid light rain -7 (oct, breez, Cloudy	

Time	Flow ml/min		S.Conc uS/cm		рН	ORP mv	Turb NTU	WL Feet	D	Praw Own 1 feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	568	Now	Total	2.0	
11.93	138	11.1	969	4.6	5.7	338	41	581	0.13	0.13		
11:27	138	10.7	966	3.1	5.5	327	41		φ	1		
11:40	142	10.5	950	2.2	5,4	311	41					
11:50		10.4	957	2.1	5.4	312	41					
12:00	142	10,5	959	2.1	54	319	41					
1205	142	10.5	960	2.1	5.4	318	41					
12710	142	10.5	962	a.1	5.4	321	41					
		10.5		2.1	54	320	4	\downarrow	V	1		
2117	samp	led of	v V	20								
				-								
	-											
	actors											

Tubing Factors

To purge standing water in tubing 1/8" ID height in feet x 2.41 = ml needed

height in feet x = 9.64 = ml needed 1/4" ID

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede	Well I.D. SH-20 I
Sampler(s): L-Desmarais	Date: 6//0/04
Well Depth in ft. 4. (mousured 2004)	Intake set ft. From
Screen Length in ft. 10	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	4.08 Check here if no inner casing
Initial Water Level used for low flow if different than Weather: Warm, humid, light rain	above in ft Measuring point

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	raw Own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	4.08	Now	Total	2.0	
10:45	130	11.3	[4]	\$1.1	7.4	280	41	4.37	0.39	0 29	1	
10:50	132	10.8	160	7.3	7.1	290	41	4.44	0.07	6.36	1.6	
1).60	196	10.7	160	7.1	7.0	296	41	4.43	+0.01	0.35		
11:05	126	10.7	160	7.2	7.0	296	41	d	ø			
1170	126	10,7	160	7.3	7.D	296	41					
14:15	1ab	10.6	160	7.3	7.0	397	41		\downarrow	V	\downarrow	
11:17	sam	red	Rey V	04								
			0									

Tubing Factors
To purge standing water in tubing

1/8" ID

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/4" ID

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Name Beede	Well I.D. SH-201)
Sampler(s): L. Denmarais	Date: 6/10/04
Well Depth in ft. 86 (measured 2004)	Intake set ft. From
Screen Length in ft/\infty	Depth to screen from MP
Water Level at Top of PVC or Inner Casing in ft.	4.08 Check here if no inner casing
Initial Water Level used for low flow if different than ab	ove in ft. Measuring point
Weather: warm raining	

Time	Flow ml/min		S.Conc uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	raw)wn feet)	Pump Speed
Stabi	ization	3%	3%	10%	0.1	+/- 10	10%	4,08	Now	Total	2.0
î91.55	132	11.3	216	6,1	7.3	267	2	4.58	0.50	0.50	
Wist 1	134	10.6	189	4,6	7.4	275	١	5.02	0,44	094	1.2
10:05	96	109	188	34	7.5	278	4	5.12	0.10	1.04	1.0
10:15	90	10.9	187	2.9	7.6	273	41	5.18	0.06	1.10	0,4
10 ॐ	78	11.1	185	2.9	7.7	269	<1	5.15	0.03	1.07	
0:30	76	11.3	185	9.8	7.7	269	< 1		Ø		
ID:35	78	11. 1	184	2.6	7.7	269	41				
10:40	78	11.3	184	9.6	77	269	41	1			1
10:42	sam	pled	for V	<u>'OCs</u>							
`											

Tubing Factors
To purge standing water in tubing $1/8^{11}$ ID height in feet x 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed <u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

Job Nameblede	Well I.D. SH 215
Sampler(s): L Demound	Date: 6/14/44
Well Depth in ft. 20-27 (manual 8103)	Intake set 6.27 ft. From hethm
Screen Length in ft	Depth to screen from MP
Water Level at Top of PVC or Inner Casing in ft.	Check here if no inner casing
Initial Water Level used for low flow if different than	
Weather: Overcost, breezy	Medadring point tome

Time	Flow ml/min	Temp ⁰ C	S.Conc uS/cm		pН	ORP mv	Turb NTU	1	'L eet	De	raw own feet			ımp
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	18	نر. اد	Now	Tot	al	3,	D
11.96		13.1	391	3.5	F.3	301	3	18.	49	0 03	0	02		
11:30	180	11.4	389	1.8	عا, ی	312	1			Ø				
11.45	183	11.3	2710	5.1	6.2	331	41							
11:55	180	11.2	270	5.2	6.1	345	41							
300		11.5		5,1	لما	348	41							
13:65	180	11.7	271	5,1	6.1	351	41						-ne-	
13/10	186	11/2	270	5.	6.1	351	41	1		$\sqrt{}$	4		1	
1214	Dam	lect ,	JVV/)Cs							`			
									_		,			
									\downarrow					
									_					
						-			_			_	-,. ,	
									_					
		-												
Tuhing I								<u> </u>						

Tubing Factors

To purge standing water in tubing

1/8" 1D height in feet x = 2.41 = ml needed

1/4" 1D height in feet x = 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Beede	Well I.D. SH-21I
Sampler(s): L. Desmaran	Date:
Well Depth in ft. Screen Length in ft. 12.5 (neurosed 6/04)	Intake setft. From
Water Level at Top of PVC or Inner Casing in ft.	Depth to screen from MP ft.
Initial Water Level used for low flow if different than	
Weather: Over Cast, bree Zy	weasuring point TABU

Time	Flow ml/mir		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	D	own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	17.31	Now	Total	2.0	
12:30	132	12.8	359	7.0	6.4	293	41		Ø	Ø	2,4	
lc 35	146	12.2	470	3,4	5.9	319	41			1	3,0	
10:45	182	11.8	484	1.3	5.9	322	41				3.3	
0.55		11.8	490	0.7	5.9	322	1					
11:00		11.8	491	0,7	5,9	325	41					
- 1		11.8	491	0,7	5.9	326	<u> </u>					
	<i>ે</i> અ	12.1	490	6,7	5.9	323	<1	\downarrow		1		
1:12	san	pld	for	1065				· · · · · · · · · · · · · · · · · · ·		`		
					-							
-				-								
												· · · · · · · · · · · · · · · · · · ·
_												
		_										

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" 1D height in feet x = 9.64 = ml needed

<u>Stabilization</u> = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Belde	Well I.D.	5'H-21D	
Sampler(s): L. Desmaran	Date: 6	14/04	
Well Depth in ft. 76.163 (menawed 6/04)	Intake set	ft. From	
Screen Length in ft. 10	Depth to scree	n from MP	ft.
Water Level at Top of PVC or Inner Casing in ft.	14.87	_ Check here if no	inner casing
Initial Water Level used for low flow if different than	above in ft. 17.04	Measuring po	oint Edward Ville
Weather: Munia overcast breezy			
' /			

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	Do	caw wn feet)	Pump Speed
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	17.09	Now	Total	2,5
1935	150	ነጊ, ጌ	272	6.2	7.7	243	21	17.55	0.46	0.46	1
29.40	152	12.)	225	3,7	7.5	257	4	17.72	0.17	0.63	2.7
19.50	134	12.1	170	1.9	7.7	257	21	17.83	0.11	074	۵.0
10.00	182	12.1	151	1.8	7.8	257	<u> </u>	17.79	10.04	0.70	
16:45	122	12.1	151	1,9	7.8	259	<1		0		
j0.10	122	12.1	150	19	7.8	258	۲)				
10:15	122	12.1	120	1.9	3.€	258	41	J		\bigvee	
10:17	san	splid	Lor	VCCs		-				Ì	
	T										

Tubing Factors
To purge standing water in tubing

height in feet x 2.41 = ml needed 1/8" ID

1/4" ID height in feet x = 9.64 = ml needed

Job Name Sampler(s):	Well I.D. SH-JLS Date: 6/3/69 Intake set 5 ft. From both 15 Depth to screen from MP ft. Off Check here if no inner casing rent than above 1.31 Measuring point 706
Sampled for UOG, Alkalming,	Chloride, Scitate, Nitrak, TKV, Fe, m

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	Do	raw Own feet)	Pump Speed	
Stabili	zation	3%	3%	10%	0.1	+/- 10	10%	7,21	Now	Total	2.7	
11.12	200	11	330	2.0	5.6	<i>3</i> 03	41	7.31	.01			
11'.17	204	10	324	1,2	5.5	222	-1	7.22	0	\		
11:30	208	10	324	1,3	<i>5</i> 8	337	21	7.22	j			
1,'35			324	1,2	515	466	4	7.02	J	6		
11:40	Sam	plul										

Tubing Factors
To purge standing water in tubing

1/8" ID 1/4" ID height in feet x 2.41 = ml needed height in feet x = 9.64 = ml needed

Job Name	Beade		Well I.D.	SH-228	
Samplers:	S. PUKIN		Date:	6/3104	
Well Depth	52.10	feet	Intake set	5 ft. From	biron
Screen Length	10	feet	Depth to scr	een from MP	11
	of PVC or Inner Casi		6.89	Check here	zil no iar er e.b
Initial Water Level	used for low flow if d	ifferent than al	oove	Measurii	ng point
Weather: 5m14	+ warm				
			Wide states	4	
	MA.				

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WL Feet	Do	aw own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	6.89	Now	Total	3	
10:24	170	11	507	3.8	6.2	100	4	7.22	.33	,33		
10.29	168	11	488	1,7	6.0	131	4	7.25	,02	35	2.7	
10:40	166	10	474	0:7	6.0	172	4	7.24	+01	.34		
10:50	165	10	465	0.6	6.0	192	۲1	7,34	D	İ		
10:55	166	10	464	0.5	6.0	194	4 1	7.24				
11.00	166	10	464	0.5	6.0	196	41	7.24				
11:05	166	10	464	0.5	6.0	195	21	7.84			\(\psi\)	
11.10	5 am	plul										

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Job Name Bude	Well I.D. SH DDR
Sampler(s): 5. PUKIN	Date: 6/3/07
Well Depth in ft. 15852	Intake setft. From
Screen Length in ft. 101	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft	6.41 Check here if no inner casing
Initial Water Level in ft. used for low flow if different than	above Measuring point
Weather: mostly smy, covl.	
Sampled for UDG, Alkalinty, Chloride,	Sufak, Whate, TKV, 7e, My

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	aw wn feet)	Pump Speed	Comments
Stabili	ization	3%	3%	10%	0.1	+/- 10	10%	6.41	Now	Total	3	
9:12	198	11	700	5.3	7.9	52	7	6.42	,01	,01		
9:17	202	10	686	1.0	8.2	-110	50	6.44	٠٥٠	,03		
9:30	<i>∂</i> 103	10	653	0.6	7.9	-151	85	6.44	0	,03		
9:40	доч	10	642	0.4	7.9	-149	30	6.46	ـدن,	.05	2.7	
9:50	199	10	637	0.4	7.9	-136	98	6.46	0			
101.00	197	10	635	0.3	7.9	-138	25	6.46				
10:05	196	[0	633	0.4	7.9	-137	28	6.46				
10'.16	196	10	635	0.4	7.9	-139	28	646				
10'.15	San	plest										
		I										
												- Marie

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Job Name Beede	Well I.D. 5H-235
Sampler(s): L. Desmarais	Date: $6/3/64$
Well Depth in ft. 15.90	Intake set 2.62 ft. From 2770M
Screen Length in ft. /C	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft.	Check here if no inner casing
Initial Water Level used for low flow if different than	n above in ft Measuring point
Weather: Warm Sunny	

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU		VL eet	1	Do	aw wn feet	ļ		ımp beed			
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	9.1	7	Nov	v	Tot	al	3	.2		,	
10:33	210	ما.0	468	4,4	6.5	252	1			Q	(0	5				_	
10:38	212	9,9	466	3.8	6.4	265	4)											
10:50	222	9.8	468	3.6	6.4	262	4											
11,00			465	3,5	6,4	277	4											
UilO	224	9.7	463	3.4	6.4	289	4											
11:30	228	9.7	471	3.4	64	298	∠											
11:25	228	9,6	471	3.4	6,4	301	41											
11.30	928	9.6	473	3.4	6.4	302	41					,						
11:35	228	9.6	472	3,4	6,4	302	41	V	,		/	V	/	è	/			
11:38	Sange	eel l	x VD(s, Fe, N	ln TK	N. Alka	linity (Me	vide	NI	vai	(+	Sul	Fai	te			
		U	·				` '									 		
																	-	
																		_
																 -		

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Well I.D	SH-231	
Date: b	13/04	
Intake set	ft. From	
Depth to scre	een from MP	ft.
9,23	Check here if no	inner casing
above in ft	Measuring po	int
vain		
1		
	Date: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Date: \$\begin{aligned} \begin{aligned}

Time	Flow ml/min		S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	raw Own feet)	Pump Speed
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	9.23	Now	Total	2.4
13.25	184	10.8	577	1,0	6.3	177	J	9.34	0.11	0.11	2,4
13:35	188	10:3	564	0.5	6,2	191	29	9.45	6.11	0.22	2.1
13.45	تاماا	6,01	627	4.0	6.2	173	\$	9,43	r0.07	0.30	
13:55	الهلا	(D.)	643	0.4	6.0	152	3	ĺ	<i>₽</i>		
14705	166	10.7	649	4.0	ζ, ω	143	J				
14.15	النالن	102	652	6.4	6,2	136	9				
14:20	lob	10/2	653	4.0	(دیا	136	2				
14:25	عاجاا	107	453	0,4	6,2	135	3				
14.50	حاعا	6.01	653	0.4	6,2	136	2				$\sqrt{}$
14:37	Dam	ded 1	WV VO	s.Fel	Yn Ak	alinit	1 and	ndesi	Hz tc	N. ha	letu
		,)	, -(,	,			· · · · · ·			

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

Job Name Beede	Well I.D. 571-231
Sampler(s): L Desmarcis	Date: 6/3/04
Well Depth in ft. 65.52	Intake set 5 ft. From bottom
Screen Length in ft.	Depth to screen from MP ft
Water Level at Top of PVC or Inner Casing in ft.	Check here if no inner againg
Initial Water Level used for low flow if different than	above in ft. Measuring point
Weather: Warn Sunny	made and point
)	

Time	Flow ml/mir		S.Cono uS/cm		рН	ORP mv	Turb NTU		t	Do	aw wn ^(eet)	Pump Speed	
Stabi	lization	3%	3%	10%	0.1	+/- 10	10%	9,0	Nov	v	Total	2.4	
11.47	148	10.3	178	2.4	7.2	257		9,3:	+ 0.3	3	0.33	24/2,0	started primpersident
11:52		10.4	175	0.7	7.2	266	1	9,40	0.0	3	0.36		
13:00	148	10.4	173	0.6	13	262	41	9.42	0-0	2	0.38	1.6	
18,20	140	10,0	174	0.5	7.4	161	1	9.40	tao	2	0.36		
12-30		10.7	176	t.4	7.4	14	41	1	Ø	_			
1340		10.6	176	6,4	7.4	39	41						
12.50	140	10,7	177	0,4	7.5	27	4						
1300	140	10,7	176		7.5	19	4)						
	140	10.6	176	0.3	7.5	<u> 15</u>	41		11				
	140	10.7	177		7.5	-7	41		1				
	140	10.8			7.5	-1	41		1				
13-20	140		177		7.5		4	<u> </u>	V		1	\downarrow	
13:27	Sanf	Hell Hell	Sor 4	Xs. Fp	MAT	KNO	Valuni	dy Ch	onido	5	1/oth	· Without	9
								-					
Tubing													

Tubing Factors

To purge standing water in tubing 1/8" ID height in feet x 2.41 = ml needed

height in feet x = 9.64 = ml needed 1/4" ID

Job Name Rede	Well I.D. 54-245
Sampler(s): L. Desmarais	Date: 6/2/04
Well Depth in ft. 19.74	Intake setft. From
Screen Length in ft.	Depth to screen from MP ft.
	13.35 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 1605 Measuring point Table
Weather: Cool, Wercust	

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP	Turb NTU	WL Feet	Do	aw Own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	16.05	Now	Total	3.0	
19:12	160	9.7	8908	10.8	4.7	289	41		Ø	Ø		
09:17	164	9.3	9081	10.5	نارله	330	4		φ	Ø		
09:27	168	9.1	8636	عا. 10	4.7	367	j	16.15	0.10	0.10		Lhanged water level-mine KEDT beeping Ineeds deaming
09.37	168	9,2	8538	10,7	4,7	367	ł		ø			, , , , , , , , , , , , , , , , , , , ,
04:47	170	9.1	8566	10.7	4.7	380	1					
1957	170	9,2	8597	10.7:	4.7	380	41					
F001	172	9,2	8718	10.7	4.7	386	41					
10:17	174	9,2	8819	10.7	4.7	399	4					
10:27	174	9.2	8930	10.7	4.7	392	41					
10:37	174	9,3	9009	10.7	4.7	395	41					
10:47	174	9.3	9036	10.7	4.7	395	4					
10:57	174	9.3	9104	10.8	4,7	395	1					
11:07	174	9.5	9147	10.7	4.7	395	1			J	<u> </u>	Į.
11:10	San	plead	a 2 ;	tr li	nit							Sp. Cond still trending
	Sam	oled A	or Fe	MnJ	XIF	M, A	Kalim	ty Ch	lende	Sukat	$-f_{i}N_{i}$	
		'			,	· · · · · · · · · · · · · · · · · · ·	`	,	, y		, .	Ü

Tubing Factors

To purge standing water in tubing

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/8" ID

1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Blede	Well I.D.	H-24I	
Sampler(s): L. Desmarais / S. Derkins	Date: <u>&</u>	12104	
Well Depth in ft. 43.86	Intake set <u>5</u>	ft. From	bothing
Screen Length in ft.	Depth to scree:		
Water Level at Top of PVC or Inner Casing in ft.	13.45		if no inner çasing
Initial Water Level used for low flow if different than	above in ft. 16.17	Measuri	ng point lilly a mule
Weather: Cool, overcast > partly sunny	•		

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Do	raw)wn feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	16.17	Now	Total	3.0	
11:22	194	10.8	743	3.8	5.8	332	2	110.23	0.06	0.06		
1127	194	10.6	455	1.5	5.8	298	l	V	9	0.06		
11:37	192	10,7	390	1.0	5,7	276	<1	16.22	10.01	0.05		
11:55		11	371	0.9	57	264	41	16.22	C)			
12:05	192	11	368	8.0	5.7	266	41	16.22	l i			
13:15	192	11	367	8.8	5.77	27(<1	10 3				
19,70	142	11	367	0.8	57	211	, · ·	1677				
13,72	192	11	367	0.8	57	2)1	41	16.3-	1	1		
13:30	SAIT	• (*)	(n. W	ble f	ikal	mh	Chi	didi	Sout	to A.	1-1994	Fe + my Tku
						'						,
									· <u>·</u>			
-												

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

Sampler(s): 5 PUKINS Date: 6/2/09	
Well Depth in ft. 103.78 Intake set 5 ft. From hortun	
Screen Length in ft Depth to screen from MP ft.	
Water Level at Top of PVC or Inner Casing in ft /5.52 Check here if no inner casing	
Initial Water Level in ft. used for low flow if different than above Measuring point 24/11 n	nie
Weather: Churchy, and	
9 /	
Sampled for Wis Alleholy, Chlinde Subste Whate, TKN; Fe my	

pump structed at 9:10

Time	Flow ml/min	Temp	S.Cond uS/cm	DO	pН	ORP mv	Turb NTU	i	Do	aw wn feet)	Pump Speed	1
Stabili	ization	3%	3%	10%	0.1	+/- 10	10%	1773	Now	Total	1.0	
9:40	18	14	797	4.5	7.5	-15	1	18.43	ער,	.70		
9:45	20	14	773	4.3	7.1.	-37	<i>∠</i> ₁	18:22	ال.	.82		
9:55	20	14	757	44	78	-59	41	18.85	,30	1.12		
10:05	Do	14	774	3.9	77	-57	<1	19.12	7	1.39		
10:15	W	M	797	3.8	78	-51	41	19.43	121	1.60		
10:92	20	14	793	3.8	78	-45	4	19.66	.23	10		
10:35	2v	14	793	3.9	7.8	-37	4)	19.48	.32	2.15		
10:45	DO	ΙŸ	796	3.7	7.8	-20	</td <td>2001</td> <td>123</td> <td>238</td> <td></td> <td></td>	2001	123	238		
10:55	дю	14	१०३	3.7	78	2	4	2049	16.	2.62		
11:05	20	15	พร	3.7	7.5	16	<1	2070	131	297		
11/15	20	15	POL	3.7	7.8	32	۷)	21.0L	مال	3.23		
11:92	jo	15	810	3.6	7.8	41	۷)	21.37	161	3.50		
11:30	20	16	209	3.6	7. 7	44	۷)	2149	کل	3,65		
11:35	مړ	16	รูงๆ	3.7	7.8	41	41	2).61	117	3.))		
11:40	W	16	20	37	7.8	48	4	ग्रा	ماار	3.93	$\sqrt{}$	2 hour limit
11:45	Sar	relia	P									

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed

1/4" ID height in feet x 9.64 = ml needed

Job Name Beedl	Well I.D. JH-255	
Sampler(s): L. Deomaran	Date: 6/4/64	
Well Depth in ft. 33.79	Intake set 5 ft. From bottom	
Screen Length in ft	Depth to screen from MP	_ft.
Water Level at Top of PVC or Inner Casing in ft.	<u>No.02</u> Check here if no inner ca	
Initial Water Level used for low flow if different than	n above in ft. 18 19 Measuring point tal	de edse
Weather: COO Sunny		<u> </u>
•)		

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	Do	aw)wn feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	1819	Now	Total	3. 0	
09:07	174	10.3	498	8.9	5.6	305	1	1820	0.61	0.01		
09.17	176	9.5	493	85	5.3	313	21	18.21	6.01	60.03		
<u>69 35</u>	178	9,4	497	8.1	5.2	330	۷)		Ø.			
09:35	178	9.4	498	8.6	5.2	340	41					waiting for ORP.
લ ે પ્ર	178	9,4	495	8.6	5.2	351	41					J
d9:55	180	Ŷ ₁ 5	496	83	52	358	41					
10:00	180	9.5	495	8.3	5.7	359	41					
10:05	180	95	493	8.5	5.2	359	۷)			Ì		
01:01	180	95	494	8:0	5,3	359	41	\forall	\downarrow	1		
61:01	Aar	mblee	l for	VOX	july							
		,	U		·							

Tubing Factors
To purge standing water in tubing

height in feet x/2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

1/8" ID

Job Name <u>Blede</u>	Well I.D. SH 25 I
Sampler(s): L. Desmarch	Date: $6/4/64$
Well Depth in ft. 59.63	Intake set 5 ft. From both
Screen Length in ft	Depth to screen from MP ft.
Water Level at Top of PVC or Inner Casing in ft.	17.74 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 19.98 Measuring point table also
Weather: Warm, Sunny, light breeze	

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	Do	raw own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	19.98	Now	Total	3.0	
10:31	i88	10.7	239	8.0	59	342	1	80.10	0,12	0.12		
10:26	186	10.6	253	7.6	6.0	343	<1	20.11	0.01	013		
10.35	188	10.6	377	7.6	6.0	340	41	9 July	Ø			
10 45		10.7	287	7.6	6.0	336	4					
10:50	188	10.6	287	7.7	6.0	334	41					
10:55	18.8	10.7	287	7.7	6.1	33Y	۷)					
1:00	188	10.7	287	7.7	6.1	334	41	V	\downarrow	\downarrow		
11.02	sam	ded.	for V	OCSU	rly					`		
		'	U		· (
											-	

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

Job Name Leede	Well I.D. 5th - 25-D
Sampler(s): L. Desmaras	Date: 6 4/04
Well Depth in ft. 98.31	Intake set 5 ft. From both M
Screen Length in ft.	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft.	21.05 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 23 23 Measuring point the edge
Weather: Warm Sunny, then hot + Sunn	14
	,

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv -	Turb NTU	WL Feet	Do	aw wn feet)	Pum Spee	d	Smalles +	tubing
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	2323	Now	Total	1.6 A.6	- 1		
11:26	38	159	418	4,8	8.0	289	41	24,03	0.80	0,80	1.0			
11:30	28	15.b	415	4.6	8,0	286	4	24.21	0 18	0.98	0.6			
1140	26	16,3	413	4,7	8,3	282	21	24,60	0,40	1.38	0.3	,		
11.50	34	17.0	413	4.7	8.5	273	41	24.94	0.33	1.71	Ø.A	5		
13.00	20	17.7	414	4,5	88	248	4)	25.30	0.36	2.07				
1205	20	17.8	415	4.6	8,8	244	41	25,43	0,13	2.20			-	·····
13:10	<i>a</i> 0	17.9	415	4.7	8.8	244	۷	25.28	0,15	2.35				
12.15	20	18.1	416	4.7	8.8	244	41	25.71	0,13	2.48				
12.17	lan	rplia	for	VX	mly									
		1	U		· ·									
								-						

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Samplers: Well Depth Screen Length Water Level at Top of PVC or Inner Casing Initial Water Level used for low flow if different worth and the second of the	feet _ feet ent than abo	Well I.D Date: Intake set Depth to screen IN IT we6,86	from MP Check her	
Weather: MOSTLY Closery MIMID				

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	1	D	raw own feet)	Pump Speed	
Stabil	zation	3%	3%	10%	0.1	+/- 10	10%	1586	Now	Total	3	
12:57	197	12	733	3.1	6.1	92	1	157 87	T	,01	İ	
13:02	195	10	727	1.5	5.9	136	41	1587				
13'.10	198	10	725	1.4	5.8		21	1281	1			
13'20	198	16	722	1.3	5.9	178	41	1587				
13'30	198	10	722	1.4	5.9	189	41	15.87				
3:40	198	10	772	1.3	5.8	000	ZI	1587				
13:45	198	10	721	1.4	5.9	202	4	15.87				
9:50	198	10	721	1.3	5.9	204		15.87				
13:55	198	10	722	1.4	5.9	206		150		J		
14:00	Sun	solid	fw 1	JUG	unlin		,		-4		7	
		r					_					
									_			

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed

Job Name Beide		Well I.D. <u> </u>
Samplers: 3. Pukins		Date: $6/9/09$
Well Depth 16.34	feet	Intake setft. From
Screen Length 10	_ feet	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing _		S.69 Check here if no inner casing
Initial Water Level used for low flow if differ	ent than	above Measuring point
Weather: Smay + and		

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Dr Do (in f		1	mp eed	Comments
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	8.69	Now	Total	-	3	
8:25	164	10	82	10.5	6,2	995	3	8.69	0	0			
9:00	183	9	52	10.1	6.0	220	2_	8,70	101	,0)			
9:10	1.82	9	43	9.7	5.9	261	41	8.70	0		<u> </u>		
9.80	190	9	38	9.4	5.9	277	41	8,70	Ì				
9130	19	4	36	8.9	59	293	2-1	€.)∪			Ш		
9:40	192	9	36	8.6	5.8	218	4	8.70					
9:45	197	q	36	8.4	5.9	299	4	8,70			Ц		
9.50	142	9	37	8.5	5.9	300	4	8.70		1			
d:22	Sam	alist	WU	Ols or	14						ľ		

Tubing Factors
To purge standing water in tubing

1/8" ID 1/4" ID height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed

Job Name Beede		Well I.D.	5H-28S	
Samplers: 5, PUKINS		Date:	6/14/04	William Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.
Well Depth	feet	Intake set	ft. From 🛶	JV (~
Screen Length	_ feet	Depth to screen f	rom MP	ft
Water Level at Top of PVC or Inner Casing _			Check here if no	o im er easin 2
Initial Water Level used for low flow if different	ent than abov	ve <u>5.02</u>	Measuring poi	int 70c
Weather: MOSTLY Closer war	*	WAR W		Edge 11 Table.
				•
		9	111111111111111111111111111111111111111	

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm		рН	ORP mv	Turb NTU	WL Feet	Do	aw own feet)	Pump Speed	Comments
Stabili	ization	3%	3%	10%	0.1	+/- 10	10%	502	Now	Total	3	
9:17	205	15	438	24	4.8	176	277	504	٦٥,	. N		Color of dark pincapile
9:22	208	15	452	0.9	4.5	206	113	507	.03	.05		
9:30	212	15	437	0.7	4,6	210	44	50	0	İ		
9:40	212	15	419	0.6	4.7	194	25	5.07	j			
9:50	214	15	409	0.6	49	184	16	SM				
10.00	218	15	394	0.6	5.0	179	12	507				
10:10	270	15	384	0.7	4.9	178	٤	5.07				
:0:20	218	15	374	0.7	5.0	173	8	5.07				
10:30	727	15	364	0.7	5.0	170	7	5.07				
10.40	156	15	352	0.7	5.1	168	4	500				
10:50	221	iS	346	0.7	SII	167	5	5.07				
11.00	722	15	341	0.7	5.1	166	4	5.07				
11:10	7)}	15	339	0.7	<i>6</i> .1	166		507	•			
11:17	232	15	337	6,7	5.1	165	4	5.07	J	U		2 hour and
11.20	Sum	sligh	fw	ws.	واص							
]						

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed

Joh Name Blede		Well I.D.	SH-295	
Samplers: 5. feeks		Date:	6/14/01	900 State 150 St
Well Depth 11.85	feet	Intake set 7	_ft. From _ for ouc	
Screen Length	feet	Depth to screen		ft.
Water Level at Top of PVC or Inner Casing		1,47	Check here if no in	ner casing
Initial Water Level used for low flow if different	ent than a	above <i>3.59</i>	_ Measuring point_	edge of table
Weather: Mostly Close + cost	RAIN			
1 1 1 1 1				

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	l .	Do	aw wn feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	389	Now	Total	3	
11:37	210	14	319	2.2	6.2	-30	14	4.28	.39	.39		
11.42	312	13	653	0.8	6.3	-42	7	439	, ()	,50	2.6	
:17:50	194	13	657	0.6	6.3	_50	4	4.38	†01	,44	J.	
19:00	194	13	660	0.6	6.3	-54	4	437	+01	48	2.7	
13:10	201	13	6SZ	0.6	6.3	-56	2	4.38	,01	49	İ	
12:20	204	13	647	0.6	6.3	-57	2	438				
12:25		13	646	0-6	6.3	رک	2	4.38	1			
12:30	204	13	646	0.6	6.3	-57		4.38			İ	
12:35	201	13	646	0.6	6.3	-57	2	4.38		4	4.	
12:40		glin	Cox		only							
					•							

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Job Name Belde	Well I.D. SH-335
Sampler(s): L. Desmurais	Date: <u>6/16/64</u>
Well Depth in ft. 97.60	Intake set 3 ft. From hothern
Screen Length in ft	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft.	2200 Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 24.50 Measuring point the rate
Weather: 5Umy warm	
<i>)</i>	

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet		Do	aw wn feet)		ımp beed	
Stabil	lization	3%	3%	10%	0.1	+/- 10	10%	24,50	Now	,	Total	2,	,4	
18:37	138	14.4	358	8.9	5.8	272	4	24.53	0.0	٤:	205			_
28.43	142	12.8	335	8.6	55	305	3		Ø					
08-55	144	12.5	284	8.7	5.6	312	l							
69:05	144	12.4	239	8.6	5.6	321	<1							
09:15	144	13,5	213	8.4	5.6	322	<u>-1</u>							
69.25	144	12.5	200	8.1	5,6	322	41							
01:35	144	12·7	191	7.8	5.6	325	41							
હલમાડ	144	12.7	<i>8</i> 35	7.9	56	331	61				`			
OUE	1-14	12.7	217	7.3	5.6	337	21					\downarrow		
10:05	144	13.9	193	6.9	5.6	340	4							
10.15	144	00	177	7.0	5.6	344	41							
10.25	144	39	172	3,2	5,7	341	21							
10:35	144	120	105	6.5	5.7	333	41	/	1		/	V		17.10
10-37	rsa.	nplia	110	10Cs										Sermited &
			-											
		_												

Tubing Factors
To purge standing water in tubing

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed

1/8" ID 1.4" ID

Job Name Sampler(s): Well Depth in ft. Screen Length in ft. Water Level at Top of PVC or Inner Casing in ft Initial Water Level in ft. used for low flow if different	Well I.D. SH 385 Date: 6/6/c1 Intake set 5 ft. From 10 How Depth to screen from MP ft. Check here if no inner casing than above 21.63 Measuring point 76.
Weather: Sundy + hot	

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Dr Do (in		Pump Speed	Comments
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	21.63	Now	Total	3	
H3H	^	14	59	7.8	5.8	269	6	21.71	.08	108		
14:39		14	51	9.7	55	319	4	3171	<u> </u>	<u> </u>		
14050		14	48	9.8	54	33h	<u>i_</u>	21.71	1			
15:00		13	49	10.1	5.6	338	4	21.71				
15.05		14	48	10.1	5,5	340	41	21.71			11	
jS!10		14	49	10.1	5.6	342	41	21.71	1	1	1	
12.12		noced	fr.	10(5 0	1/2					-		
					<u> '</u>							
					ļ					-		
					-				ļ	-	_	
				<u> </u>					-			
				ļ		-			-			
								-	-	-		
									ļ	-		
									-			
						-						
												s, taken at 3 - 5 minute intervals, are

Tubing Factors

To purge standing water in tubing

1/8" ID height in feet x 2.41 = ml needed 1/4" ID height in feet x 9.64 = ml needed

Job Name <u>beade</u>	Well I.D	SH-41S	
Sampler(s): Li Desmarais	_ Date:	6/8/04	
Well Depth in ft. 15 74	Intake set	5 ft. From bottom	
Screen Length in ft.		een from MPft.	
Water Level at Top of PVC or Inner Casing in ft.	890	Check here if no inner casing	
Initial Water Level used for low flow if different than	n above in ft	Measuring point	
Weather: hot sunny breezy			***************************************
)			

Time	Flow ml/min		S.Cond uS/cm		pН	ORP mv	Turb NTU	WL Feet	Do	raw Own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	890	Now	Total	30	
14:17	214	13,9	95	11.3	6.5	993	8	9.00	0.19	910		
14.22	212	13.3	100	10.8	614	256	<1		Ø			
14:35	ĺ	13.2	107	10,7	6.3	303	41					
14-45	312	131	110	10.8	6.3	323	41					
1455	317	13.1	111	10,9	6.3	322	41					
14.55	212	129	111	10.0	6.3	324	4					
15:00	212	129	111	10.9	6,3	322	41	1				
15:02	Same	led	wyo	Cs unli	*		8.4908.44			`		
	,				J							
	11.100											
										ļ		
	_											

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x/2.41 = ml needed

1/4" ID height in feet x = 9.64 = ml needed Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Beede	Well I.D. 54-435	
Sampler(s): L. Desmaras	Date: 6/7/64	
Well Depth in ft. 20.63	Intake setft. From	
Screen Length in ft. 10	Depth to screen from MP	ft.
Water Level at Top of PVC or Inner Casing in ft.	13,77 Check here if no	
Initial Water Level used for low flow if different than	above in ft. Measuring po	oint
Weather: WYM, Shiny breezy		
Slight odor to water- not detoctable	a unless I held the graduated	Culinder Rill
Slight odor to water-not detectable of water up to my nose.		
)		

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	pН	ORP mv	Turb NTU	WL Feet	Do	raw own feet)	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	13.77	Now	Total	3.0	
14.10	194	13.4	133	23	6.3	42	3	1378	0 01	001		
14:15		12.7	131	0,6	6.2	32	4		Ø_			
14:35	196	12.8	147	0,5	6,3	2	41					
14:35	196	12.8	151	0.5	6.4	-8	41		- -			
14:45	196	12.7	150	0.4	6.4	-13	41		-			
4,50	198	12.6	158	0.5	6.4	-13	41					
14,55	198	12.7	157	0.5	6,4	-14	<u> </u>		1 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
15:00	198	128	157	0.5	6,4	-15	41	1	<u> </u>	V		
15:03	Dâm	pled of	w VD	s, Fe	MIJI	N, A	<u> Yalını</u>	M SNH	Pate (V	londe	Withat	
15:08	Sam	hed d	ups	Ì								
			<u>'</u>									
								ļ		-		
					ļ					ļ		
										-		
								-				
												t 3 5 minute

Tubing Factors
To purge standing water in tubing $1/8^{\circ}$ 1D height in feet x 2.41 = ml needed

height in feet x = 9.64 = ml needed 1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Beede	Well I.D. 5H-44S
Sampler(s): Desmarais	Date: 1014/04
Well Depth in ft. 22.71	Intake set 3:45 ft. From bottom
Screen Length in ft. 10	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft.	Check here if no inner casing
Initial Water Level used for low flow if different than	above in ft. 15.51 Measuring point TV
Weather: humid werest, breezy	
Franflak in well- 1 let the flock run	out for N5 mins before connecting the tubing
to the sunde.	

1	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Do	raw own feet)	Pump Speed
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%	15.51	Now	Total	3.0
12:46	186	11.9	132	5,3	6,2	137	10	15.52	0.01	0.01	
12.51		11.3	129	4.3	6.1	145	30		Ø		
13:00	186	11.5	138	4,9	61	131	27				
13:10	186	113	141	3,4	61	13)	10				
13.25	' ,	11.3	147	2,8	6.1	124	21				
13/35	186	11,2	150	2,4	61	119	4				
1350	188	11.2	153	2.3	6.1	113	4)				
1355	188	11.7	155	2.3	6.1	111	41				
111.00		11.1	157	3.3	6.1	110	4		!		
14,02		11.1	156	2,3	6.1	108	4			1/_	
1471	sam		for 1	10Cs							
<u> </u>	,	1	O.								
		-									

Tubing Factors

To purge standing water in tubing

height in feet x = 2.41 = ml needed height in feet x = 9.64 = ml needed 1/8" ID

1/4" ID

Job Name <u>Biede</u>	Well I.D	SH-565	
Sampler(s): 5. PUKIS	Date:	6/16/04	
Well Depth in ft. 32.58	Intake set	ft. From botton	
Screen Length in ft	Depth to screen	ft.	
Water Level at Top of PVC or Inner Casing in ft	17.67	Check here if no inner casing	J
Initial Water Level in ft. used for low flow if different t	than above	Measuring point 771	
Weather: Sony + hot		·	
<u>'</u>			
me bottom, hence one high initial of	to botton up W	ell which stirred we	
the bottom hence the high initial	hnbidiks		
,			

Time	Flow ml/min		S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU		D	raw own 1 feet)	Pump Speed	
Stabili	ization	3%	3%	10%	0.1	+/- 10	10%	17.87	Nov	v Total	3	
8:31	185	12	60	12.0	5.8	268	77	17.88	101	.01		
8:36	18)	10	59	11.3	5.7	291	13	17/8/	0			
8,45	187	i١	59	11-4	5.>	297	5					
8:22	188	10	57	115	5.7	295	2					
9:00	188	10	58	11.4	5.7	295	1					
9105	188	10	58	114	5.7	297)					,
9'.10	188	ſρ	57	11.4	5.7	296	1	4	1			
9:12	San	plul	for	UDCS	ush			p			,	
					1							
					:							

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Job Name Beede	Well I.D. SH-575
Sampler(s): S. Ren Kins	Date: 6/16/01
Well Depth in ft. 23.70	Intake set 2 ft. From better
Screen Length in ft. 10	Depth to screen from MPft.
Water Level at Top of PVC or Inner Casing in ft	Check here if no inner casing
Initial Water Level in ft. used for low flow if different the	nan above 30.42 Measuring point 106
Weather: Sumy + hot	

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU	WL Feet	Do	aw wn feet)	1	mp eed	Comments
Stabili	zation	3%	3%	10%	0.1	+/- 10	10%	2042	Now	Total	3	3	
9.28	190	17	151	10.0	6.3	239	4	76 Y	,01	,01		1	
9133	188	10	133	10.5	5.9	290	4	20.43	0	1			
9:45	188) 0	197	10.₹	5.9	308	۷١_	20.43					
1185	188	10	125	10.6	5.9	318	21	20.43					
10:05	186	10	126	10.6	5.9	325	41	20 43					
10:10	188	10	197	10.5	5.9	326	<1	20.43					
10/15	188	16	126	10.5	5.9	325	4	2.42	1	7	\		
10120	Sun	plin	· hr		nh								

Tubing Factors
To purge standing water in tubing

height in feet x 2.41 = ml needed 1/8" ID

height in feet x = 9.64 = ml needed 1/4" ID

Stabilization = when 3 consecutive readings, taken at 3 - 5 minute intervals, are within the stabilization limits listed above.

NR = No Reading

Job Name Beede		Well I.D.	WP-14	
Samplers: 5. Per Kins		Date:	6/15/04	
Well Depth	feet	Intake set 🛂	ft. From _	bothern
Screen Length	feet	Depth to screen	from MP_	ſt.
Water Level at Top of PVC or Inner Casing	0.34 before	0.32 after	_ Check here	e if no inner casing
Initial Water Level used for low flow if differ	rent than abov	e	Measurii	ng point
Weather: Suny hot + humid				
1,				
Woles level telen from	tor a cour	elen		
1,05-7,1= 3.4 Before W	<u></u>	δ		
1,03-7,1 = 3,2 April 4	IL.			

Time	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU		Dr Do (in f	wn	Pump Speed	
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%		Now	Total	3	
:3:06	230	14	567	2.0	7.8	-251	6			_/	1	
13/11	232	12	532	3.0	6.2	-64	5				2.5	
1370	202	12	513	3.3	6.1	- 20				/	İ	
13:30	20%	12	518	3,3	6.0	. 5	41	\				
13:35	202	12	518	33	60	6	41		X			
13140	202	12	50	3,3	6.0	16	41	/				
B; 45°	302	12	200	33	6.0	17	41					
13:50	202	12	520	3.3	6.0	16	4	<i></i>				
13:55			for C	My i	115							
							-					
						W. 1877 - M. 1877 - W. 187						
:												

Tubing Factors
To purge standing water in tubing

1/8" ID height in feet x = 2.41 = ml needed 1/4" ID height in feet x = 9.64 = ml needed

Samplers: Sult Date:	- t. sing
from top of troing to water = 0.65 ft 0.64 from top troing to top coupling = 0.28 ft 0.38 water trad from top of coupling = 0.37 0.36	

Гime	Flow ml/min	Temp ⁰ C	S.Cond uS/cm	DO mg/l	рН	ORP mv	Turb NTU		Dra Do (in f	wn	Pu Sp	- 1	Comments
Stabil	ization	3%	3%	10%	0.1	+/- 10	10%		Now	Total	3	,	
10:30	214	13	249	2.9	(ما	-99c	4	NIX	NIA	NK	1		
10:35	216	1)-	352	1.1	5.9	-25g				7			
10.45		12	365	0.9	5.8		4			/_	_		
10:25			358	0.8	S.7	-170	11			<u>/</u>			
11.05	218	12	355	0.9	5.7	-146	41	\			_	_	
11:15	318		357	^	5.7	-193	41		\mathbf{M}			1_	
11,37		17	351	6.9	5.7	-98	41		<u> </u>		1	-	
11,35	. 1	17	349	0.8	5,7	63-	41		$\!$		_		
11,45		12	349	3.0	5.6	-70	41		1	<u> </u>	-	-	
11.5	1 218	12	349	3.0	5.6	-61	41		4	\bot		_	
Dio"				0.4	15.7	-47	41	1/		$\perp \perp$		-	
12:10			347	0.8	57	-48	21	1/			$\backslash\!\!\!\!\perp$	\perp	
12.15		17	347	0.8	5.7	-47	21	1/_	+-		4	1	
17.3		nnsl:	nd for	vous	11/4					-			
10.3	1 2										_		
											_		
											-		
												_==	s, taken at 3 - 5 minute inter

Tubing Factors

To purge standing water in tubing

height in feet x = 2.41 = ml needed 1/8" ID height in feet x = 9.64 = ml needed 1/4" ID

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Sample Location /ID	Date, Sam	Time pled	# of Containe	Matrix	8260B		Other / Notes	Lab ID # (For Lab Use Only
TRIP BLANK	6/1/04 18:15		1	AQ				A74957-1 06/01 18:15
SH-245	6/2/04	11310		AQ				 A74957-2 OA/O2 11•10
SH- 24I	ĺ	12:30		AQ				A74957-3 06/02 12:30
SH - 24 D		11:45		AQ				Δ74957-4
				AQ	¥			06/02 11:45
				AQ				
				AQ				
				AQ				
				AQ				
				AQ				
				AQ				
				AQ				
vation: HCL and ice				i_				
uished By Musen Links	Date and Tin	ne 6/3/34	17!	36	Received By	Lofon	Matrice A = Air C	i= Soil AQ= Aqueous π Other:

BEEDE WELLS Site # 04-000-7307

V	OCs
	samples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14	SH-23I
AE-17D	SH-23D
AE-18S	₹SH-24S
AE-18D	⇒SH-24I
AE-21	'SH-24D
AE-22	SH-25S
	SH-25I
SH-2S	SH-25D
SH-21	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-31	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-41	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S	SH-56S
SH-14I	SH-57S
SH-14D	
SH-15S	
SH-15I	
SH-15D	WP-4
SH-19S	WP-10
SH-19I	WP-12
SH-19D	WP-14
SH-20S	WP-15
SH-20I	WP-17
SH-20D	WP-18
SH-21S	
SH-21I	
SH-21D	
* Natural Attenuation	Parameters = Fe

Natural Attenuation *	
27 samples	
AE-2	
AE-12	
AE-14	
AE-17D	
AE-18S	
AE-18D	
SH-2S	
SH-2I	l
SH-2D	
SH-3S	
SH-31	
SH-3D	
SH-4S	
SH-41	
SH-4D	
SH-15S	
SH-15I	
SH-22S	
SH-22D	
SH-22R	
SH-23S	
SH-231	
SH-23D	
SH-24S	
SH-241	
SH-24D	
SH-43S	

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

FOR LABORATORY USE ONLY

Comments and Sample Information PA) # O - 000 307 Constant
delivered on the first the
delivered on
delivered or 10 Cacked to 12
delivered or 10 Cache To To To
delivered or 10 Cache Tours
delivered or 10 Cacked to 1800
cks(s)
ETED ONLY IF APPLICABLE Time
·
b:

Date: 06-04-04

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445:3446

Results of Laboratory Analysis

Sample #: A74957-1 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/01/2004 18:15

Log in Date : 06/04/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW Collectby : SP-LD Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2 Bromomethane		BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter = Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74957-2 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/02/2004 11:10

Log in Date : 06/04/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW Collectby : SP-LD Locator : SH-24S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

Analyte	Results	RDL	Analyte	Results	DDI
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	RDL 2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	2.8	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
				224	۷

EPA Method : SW-8260

Units: ug/L

Report Comments: QC for MtBE was not w/in acceptable limits, ranged from 121 to 128%R. Limits = 80 - 120%R.

Measure date: 15-JUN-04

Authorized Signature:

Sample #: A74957-3

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW Collectby : SP-LD Locator : SH-24I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

BDL

BDL

BDL.

BDL

58

2

2

2

2

2

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/04/2004 Completion Date: 07/06/04

Collection Date: 06/02/2004 12:30

Misc ID

Analyte Results RDI. Analyte Results RDI. Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride BDI. 2 Bromomethane BDL 2 Chloroethane BDL 2 Trichlorofluoromethane BDL Diethyl ether BDL 1,1-Dichloroethene BDL 2 Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDL 2 tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) BDL 2 Diisopropyl ether (DIPE) BDL 2 Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDL 2 cis-1,2-Dichloroethene BDL 2 2-Butanone (MEK) BDI. חר Bromochloromethane BDL Chloroform BDI. 2 Tetrahydrofuran (THF) BDL 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride BDL 2 Benzene BDL 2 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane BDL 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 2 1,2-Dichloropropane BDL 2 Dibromomethane BDI. 2 Methyl methacrylate BDL 2 Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDI. 2 trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL 2 Tetrachloroethene BDL 1,3-Dichloropropane BDL 2 2-Hexanone BDL 10 1,2-Dibromoethane BDL 2 Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL 2 Ethylbenzene 5.3 2 m/p-Xylenes BDL 2 o-Xvlene 22 2 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene 5 2 1,1,2,2-Tetrachloroethane BDI. 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL 2 n-Propylbenzene 5.3 2 o-Chlorotoluene BDL 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 2 1,2,4-Trimethylbenzene BDL 2 sec-Butylbenzene 2.2

EPA Method : SW-8260 Units: ug/L

Analyst Comments: Batch ending QC was not w/in acceptable limits for Isopropylbenzene (121%R).

BDL

BDL

BDL

BDL

BDL.

2

2

2

2

2

2

Report Comments: QC for Naphthalene was not w/in acceptable limits, ranged from 122 -137%R. Limits 80 - 120%R.

Measure date: 15-JUN-04

p-Isopropyltoluene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

Authorized Signature Luco A Borrulle

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2,4-Trichlorobenzene

n-Butylbenzene

Naphthalene

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74957-4 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/02/2004 11:45

Log in Date : 06/04/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW Collectby : SP-LD Locator : SH-24D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

Luco & Bornelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level = Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent
J =Approximate Level

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026095-IN INVOICE DATE: 07/06/04

DUE DATE:

08/05/04

Attn: RICHARD PEASE

INVOICE

IDES

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

Sales cd	Description			
Sales cu		Quantity	Cost	Amount
18260	A74957-1			
10200	VOA-8260 AQUEOUS A74957-2	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A74957-3	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A74957-4	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	DEVIEW BUILD THUOTOR BUODONS			
	REVIEW THIS INVOICE THOROUGHLY, BEFORE MONTH'S END; PAYMENT IS	MAKE ALL CHA AUTOMATIC FRO	ANGES OM FUND	
			Invoice Total:	「 480.00 ¬ └ — — — 」

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026095

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments:_ S. Perkins x 6805 and Leah Desmarais x 0697 Collected By & Phone# # of Containe rs Matrix Date/Time Lab ID # Sample Location /ID 8260B Other / Notes Sampled (For Lab Use Only) AQ A75056-1 TRIP BLANK 6/2/04 AM 06/02 00:00 AQ A75056-2 AE-12 6/3/04 14:00 06/03 14:00 AQ A75056-3 5H-225 11:40 06/03 11:40 AQ A75056-4 SH-22D 11:10 06/03 11:10 -AQ SH-DAR A75056-5 10:15 0/ /07 10-15 AQ A75056-6 SH-235 11:38 06/03 11:38 AQ A75056-7 SH-23I 14:32 06/03 14:32 AQ A75056-8 SH-23D 13:22 06/03 13:22 AQ A75056-9 SH-255 6/4/04 10:19 0/ /04 10:12 A75056-10 AQ SH-25I 1002 06/04 11:02 A75056-11 AQ SH-25D 2:17 06/04 12:17 AQ A75056-12 SHRFS 69:55 06/04 09:55_

Preservation: HCL and ice			
Relinquished Bot Och Demoran	Date and Time 6/4/04 16:45	Received By Klad Struck Matrix: A= Air S= Soi	AQ= Aqueous π Other:
Relinquished By	Date and Time Lolaton 1036	Received For Laboratory By	Section No.: 22.0
Page of	Data Reviewed By	Date 07-27-84	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

A75056-13 06/04 12:2			Matrix	# of Containe rs	тріеа	Sam	Sample Location /ID
		/	AQ	2	19:30	6/4/04	WP-18
			AQ				
			AQ				
			AQ				
			AQ				
			AQ				
		-	AQ				
			AQ		JI.		
		·-	AQ				
			AQ				
			AQ				
			AQ				
	1						
			AQ AQ				

BEEDE WELLS Site # 04-000-7307

V	/OCs
	samples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14	SH-23I
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-24I
AE-21	SH-24D
AE-22	SH-25S
	SH-251
SH-2S	SH-25D
SH-2I	SH-26S
SH-2D	ŞH-27S
SH-3S	SH-28S
SH-3I	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-4I	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S	SH-56S
SH-14I	SH-57S
SH-14D	
SH-15S	
SH-15I	
SH-15D	WP-4
SH-19S	WP-10
SH-19I	WP-12
SH-19D	WP-14
SH-20S	WP-15
SH-20I	WP-17
SH-20D	WP-18
SH-21S	
SH-21I	
SH-21D	
* Notural Attanuation	

Nati	ural Attenuation 3
	27 3diffple3
	AE-2
	AE-12
	AE-14
	AE-17D
	AE-18S
	AE-18D
	SH-2S
	SH-2I
	SH-2D
	SH-3S
	SH-31
	SH-3D
	SH-4S
	SH-41
	SH-4D
	SH-15S
	SH-15I
	SH-22S
,	SH-22D
	SH-22R
	SH-23S
_	SH-231
	SH-23D
48.0	SH-24S
	SH-24I
	SH-24D
	SH-43S

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

FOR LABORATORY USE ONLY

acceptable? Do the paperwork and sample labels agree? Preservation listed on the sample bottle(s)? How did the laboratory receive the sample(s)?				Inspection Comments and Sample Information Project (EPA) # Temperature °C
Check for leakage, breakage, and volume) Do VOA's or Radon have air bubbles? Was the paperwork submitted adequate and completely filled out? Hold times acceptable? Do the paperwork and sample labels agree? Preservation listed on the sample bottle(s)? How did the laboratory receive the sample(s)?				Temperature °C
acceptable? Do the paperwork and sample labels agree? Preservation listed on the sample bottle(s)? How did the laboratory receive the sample(s)?				
Preservation listed on the sample bottle(s)? How did the laboratory receive the sample(s)?				
How did the laboratory receive the sample(s)?				
How did the laboratory receive the sample(s)?				
Was the				Hand delivered or
Was the sample(s) received in a cooler? How many coolers were received? What was used to lower the temp?				Mail Number of Coolers IceCold Packs(s) Nothing
Was the Client contacted by phone?	LIS	T BEL	OW TO	D BE COMPLETED ONLY IF APPLICABLE
Reason Additional Comments:				DateTime
f present, was the Custody of Seal intact?	_			
Vas the sample(s) subcontracted? List the amples which were sent and tests equested:				Contract Lab: Date/Time
			. 1	Name of Staff Releasing Sample:
completed By:	Dat	te:	((NA = Not Applicable

Was the sample(s) subcontracted? List the samples which were sent and tests requested:		Contract Lab: Date/Time	
		Name of Staff Releasing Sample:	
Completed By:	Date:	1-17(a)	N.

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/02/2004 00:00

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

Luca & Barin

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : AE-12

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 14:00

Misc ID

Analyte Results RDL Analyte Results RDI Dichlorodifluoromethane BDL 2 Chloromethane BDI. 2 Vinvl chloride BDL Bromomethane BDL 2 Chloroethane Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1.1-Dichloroethene BDL Acetone BDL 1.0 Carbon disulfide BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDI. 1.0 trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) BDL 2 1,1-Dichloroethane 18 2 Diisopropyl ether (DIPE) BDI. 2 Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDL 2 cis-1,2-Dichloroethene 3.2 2-Butanone (MEK) BDI. 10 Bromochloromethane BDL Chlaraform BDL 2 Tetrahydrofuran(THF) BDL 1,1-Dichloropropene 10 BDL 2 Carbon tetrachloride BDL Benzene 2 BDL 2 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane 2 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 2 1,2-Dichloropropane BDI. 2 Dibromomethane BDI. 2 Methyl methacrylate BDL 2 Bromodichloromethane BDI. 2 cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL Toluene BDL 2 Tetrachloroethene 11 2 1,3-Dichloropropane BDL 2-Hexanone BDL 1,2-Dibromoethane 10 BDL Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL 2 Ethylbenzene BDL. 2 m/p-Xylenes BDL 2 o-Xylene BDL 2 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDL 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL 2 n-Propylbenzene BDI. 2 o-Chlorotoluene BDL 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 2 1,2,4-Trimethylbenzene BDL 2 sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL. 2 1,2-Dichlorobenzene BDL 2 n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDI. 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260 Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : SH-22S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 11:40

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	3.4	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : SH-22D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 11:10

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	2.2	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

> = Greater Than

ug/kg = micrograms per Kilogram

Collection Date: 06/03/2004 10:15

Log in Date : 06/07/2004

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : SH-22R

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/04 Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature: ()

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter BDL = Below Detection Limit mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : SH-23S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 11:38

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	2.5	2
Tetrahydrofuran (THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

Luca & Barine

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : SH-23I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 14:32

Misc ID :

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	2.8	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

Luco & Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : SH-23D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/03/2004 13:22

Misc ID

Analyte Results RDL Analyte Results RDI. Dichlorodifluoromethane BDL 2 Chloromethane BDT. 2 Vinyl chloride BDL 2 Bromomethane BDL 2 Chloroethane BDI. 2 Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1.1-Dichloroethene BDL 2 Acetone BDI. 10 Carbon disulfide BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) BDL 2 1.1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL. 2 Ethyl-t-butyl ether (ETBE) BDL 2,2-Dichloropropane 2 RDI. 2 cis-1,2-Dichloroethene 15 2 2-Butanone (MEK) BDL. 10 Bromochloromethane BDL 2 Chloroform BDL 2 Tetrahydrofuran (THF) BDL 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride BDL 2 Benzene BDL 2 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane BDL 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 2 1,2-Dichloropropane BDL 2 Dibromomethane BDL 2 Methyl methacrylate BDL 2 Bromodichloromethane BDI. 2 cis-1,3-Dichloropropene BDL trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) 1,1,2-Trichloroethane BDL 10 BDL 2 Dibromochloromethane BDL 2 Toluene BDL 2 Tetrachloroethene BDL 2 1,3-Dichloropropane BDL 2-Hexanone BDL 1.0 1,2-Dibromoethane BDL Chlorobenzene BDI. 2 1,1,1,2-Tetrachloroethane BDL 2 Ethylbenzene BDL 2 m/p-Xylenes BDL 2 o-Xylene BDL 2 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDL 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL n-Propylbenzene 2 BDI. 2 o-Chlorotoluene BDL 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 2 1,2,4-Trimethylbenzene BDL 2 sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL. 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL 2 n-Butylbenzene BDL. 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : SH-25S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/04/2004 10:12

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Collection Date: 06/04/2004 11:02

: 06/07/2004

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : SH-25I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date

Completion Date: 07/06/04

Sample #: A75056-10

Category: IN HOUSE

Matrix : Aqueous

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	BDL 2 Chloromethane		BDL	2
Vinyl chloride	BDL 2 Bromomethane		BDL	2	
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : SH-25D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

RDI.

BDL

BDL

BDT.

Luco de Barmille

2

2

2

WMEB

Account #: 04-01-04 Project #: 04-0007307

_

1,3-Dichloropropane

1,1,1,2-Tetrachloroethane

1.2-Dibromoethane

m/p-Xvlenes

Completion Date: 07/06/04

Collection Date: 06/04/2004 12:17

: 06/07/2004

Misc ID :

Log in Date

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDL 2 Chloroethane BDL 2 Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1,1-Dichloroethene BDI. 2 Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDI. 2 tert-Butanol (TBA) BDL 10 trans-1.2-Dichloroethene BDL. 2 Methyl-t-butyl ether (MTBE) BDL 1,1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL Ethyl-t-butyl ether (ETBE) BDL 2,2-Dichloropropane BDL cis-1,2-Dichloroethene BDL 2-Butanone (MEK) BDL 10 Bromochloromethane BDL Chloroform BDL 2 Tetrahydrofuran (THF) BDL 10 1,1-Dichloropropene BDT. 2 Carbon tetrachloride BDL 2 Benzene BDL 2 1,2-Dichloroethane BDI. 2 1,1,1-Trichloroethane BDL 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 1,2-Dichloropropane BDL 2 Dibromomethane BDL Methyl methacrylate BDL 2 Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDI. 2

			m, p Rylenes	DDL	~
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

BDL

BDL

BDI.

BDL

2

10

2

2

EPA Method : SW-8260

Tetrachloroethene

2-Hexanone

Chlorobenzene

Ethylbenzene

Units: ug/L

Measure date: 15-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram
MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

= Less Than

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS Locator : SH-27S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/04/2004 09:55

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL 2 Chlorometham		Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 16-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARIS

Locator : WP-18

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/07/2004 Completion Date: 07/06/04

Collection Date: 06/04/2004 12:20

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran (THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 16-JUN-04

Authorized Signature:

= Greater Than

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026098-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

08/05/04

Description A75056-1 VOA-8260 AQUEOUS A75056-10 VOA-8260 AQUEOUS A75056-11	Quantity 1.000 1.000	120.00 120.00	120.00
VOA-8260 AQUEOUS A75056-10 VOA-8260 AQUEOUS A75056-11			
A75056-10 VOA-8260 AQUEOUS A75056-11			
VOA-8260 AQUEOUS A75056-11	1.000	120.00	
A75056-11	1.000	120.00	1 100 00
			120.00
VOA-8260 AQUEQUS	1 000	120 00	120.00
A75056-12	1.000	120.00	120.00
VOA-8260 AQUEOUS	1.000	120.00	120.00
A75056-13			120.00
VOA-8260 AQUEOUS	1.000	120.00	120.00
	1.000	120.00	120.00
	1 000	100.00	
	1.000	120.00	120.00
	1 000	120 00	100 00
	1.000	120.00	120.00
	1.000	120 00	120.00
A75056-6	1.000	120.00	120.00
VOA-8260 AQUEOUS	1.000	120.00	120.00
	1.000	120.00	120.00
VOA-8260 AQUEOUS	1.000	120,00 Invoice Total:	$\begin{bmatrix} \overline{1}2\overline{0}.\overline{0}\overline{0} \end{bmatrix}$
	VOA-8260 AQUEOUS A75056-12 VOA-8260 AQUEOUS A75056-13 VOA-8260 AQUEOUS A75056-2 VOA-8260 AQUEOUS A75056-3 VOA-8260 AQUEOUS A75056-4 VOA-8260 AQUEOUS A75056-5 VOA-8260 AQUEOUS A75056-5	A75056-11 VOA-8260 AQUEOUS A75056-12 VOA-8260 AQUEOUS A75056-13 VOA-8260 AQUEOUS A75056-2 VOA-8260 AQUEOUS A75056-3 VOA-8260 AQUEOUS A75056-4 VOA-8260 AQUEOUS A75056-5 VOA-8260 AQUEOUS A75056-6 VOA-8260 AQUEOUS A75056-6 VOA-8260 AQUEOUS A75056-7 VOA-8260 AQUEOUS A75056-7 VOA-8260 AQUEOUS A75056-7 VOA-8260 AQUEOUS A75056-7 VOA-8260 AQUEOUS A75056-8	A75056-11 VOA-8260 AQUEOUS A75056-12 VOA-8260 AQUEOUS A75056-13 VOA-8260 AQUEOUS A75056-2 VOA-8260 AQUEOUS A75056-3 VOA-8260 AQUEOUS A75056-4 VOA-8260 AQUEOUS A75056-5 VOA-8260 AQUEOUS A75056-6 VOA-8260 AQUEOUS A75056-7 VOA-8260 AQUEOUS A75056-6 AQUEOUS A75056-6 AQUEOUS A75056-7 AQUEOUS A75056-7 AQUEOUS A75056-7 AQUEOUS A75056-7 AQUEOUS A75056-7 AQUEOUS A75056-8 AQUEOUS A75056-8

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please	ра	y th	is	amo	unt	:
<u>-</u> –					_	-

Project Number: 04-0007307

Invoice Number: 0026098

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

NHDES

INVOICE NUMBER: 0026098-IN INVOICE DATE: 07/06/04 DUE DATE: 08/05/04

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

Sales cd	Description	Quantity	Cost	Amount
18260	A75056-9 VOA-8260 AQUEOUS	1.000	120.00	120.00
				•
	REVIEW THIS INVOICE THOROUGHLY; BEFORE MONTH'S END; PAYMENT IS A			
			Invoice Total:	$[1,\overline{5}6\overline{0}.\overline{00}]$

Make checks payable to:

Treasurer State of NH

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

[**\$** 1,560.00]

Project Number: 04-0007307

Invoice Number: 0026098

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET (Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 069

1				7			ted by a Phone#	3. Perkins x 6805	and Leah Desmarais
Samı	ole Location /ID		te/Time ampled	# of Containe	Matrix	8260B		Other / Notes	Lab ID #
	TRIPBLANK	6/4/04	50:41	1	AQ			, notes	(For Lab Use Only)
	AE-14	6/8/04			AQ	V			A75270-1 06/04 14:00
	AE-14 dup	TWISIO!	14:05	-	AQ				A75270-2 06/08 14•00
	HE-17D	V	14:00		AQ				A75270-3 06/08 14:05
	AE-185	6/7/04	1355		AQ				A75270-4 06/08 14:00_
	AE-18D	J	157.05		AQ				A75270~5
	SH-25	6/8/04	11:19		AQ				A75270-6
	SH-2I		12:29		AQ				A75270-7 _06/08_11:19
	SH-2D	J.	10-18		AQ				A75270-8
	SH-35	6/7/04	09:55		AQ				A75270-9
	SH-31		11:20		AQ				A75270-10
Preservation:	SH-30	V	12.40	/ /	Q				A75270-11 06/07 11:20
-	MCL and ice								A75270-12 06/07 12:40

	06/07 11:20 A75270-12 06/07 12:40
Relinquished By	
Date and Time Received For Laboratory By Address: A= Air S= Soil A Data Reviewed By	Section No.: 22.0
DateDate	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

ogram/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697

Sample Location /ID	Date/Ti Sampl	ime ed	# of Containe rs	Matrix	8260B	Other ,	/ Notes	Lab ID # (For Lab Use Only
SH-45	4/8/04	M.45	2	AQ			·	A75270-13 06/08 09:45
SH-4I		12/00	,	AQ				A75270-14
CH-4D		13:00		AQ				A75270-15 06/08 13:00
SH-155	4/7/04	1347		AQ				A75270-16 06/07 13:47
SH-15I		11:22		AQ				A75270-17
SH-15 D		12:47		AQ				A75270-18 06/07 12:42
SH-38S	418/04	15:15		AQ				A75270-19 06/08 15:1
517-415		15:07		AQ				A75270-20
SH-435	4/2/04	1503		AQ				A75270-21 06/07 15:03
574-435 dup		15:08		AQ	1			A75270-22 - 06/07 15:0
	1		,	AQ				00/0/ 100
				AQ				

Preservation: HCL and ice	,			
Relinquished By Lah Dumanun	Date and Time 6/10 09:50	_Received By	Matrix: A= Air S= Soil A	AQ= Aqueous π Other:
Relinquished By Store Se	Date and Time 6/9/04 1220	Received For Laboratory By	T.W.	Section No.: 22.0 Revision No.: 1 (HWRB)
Page 2 of 2	Data Reviewed By	Date		Date: 1-17-01 Page 1 of 1

BEEDE WELLS Site # 04-000-7307

V	OCs
65 s	amples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14 +dup	SH-23I
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-24I
AE-21	SH-24D
AE-22	SH-25S
	SH-25I
SH-2S	SH-25D
SH-21	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-31	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-4I	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S	SH-56S
SH-14I	SH-57S
SH-14D	
SH-15S	
SH-151	
SH-15D	WP-4
SH-19S	WP-10
SH-19I	WP-12
SH-19D	WP-14
SH-20S	WP-15
SH-20I	WP-17
SH-20D	WP-18
SH-21S	10
SH-21I	
SH-21D	
Notural Attances - F	

Natural Attenuation *	
27 samples	_
	_
AE-2	
AE-12	
AE-14	
AE-17D	_
AE-18S	
AE-18D	
SH-2S	-
SH-2I	
SH-2D	
SH-3S	
SH-3I	
SH-3D	_
SH-4S	
SH-4I	
SH-4D	
SH-15S	_
SH-15I	
SH-22S	-
SH-22D	_
SH-22R	-
SH-23S	+
SH-231	1
SH-23D	1
SH-24S	1
SH-24I	1
SH-24D	1
SH-43S	i
	1
9. 90	:

* Natural Attenuation Parameters =

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers:

Sharon G. Perkins

Leah Desmarais

FOR LABORATORY USE ONLY

Dhard 11			4.	OR LABORATORY USE ONLY
Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
PROJECT (EPA) # current?				
blank				Project (EPA) # O COO SO
Condition of sample(s) acceptable?	 	 		Temperature °C
CHECK IOF leakage, breakage and		1	1	
volume) Do VOA's or Radon have air	1		ļ	
bubbles?				
Was the paperwork submitted adequate		<u> </u>		
and completely filled out? Hold times	1	ł		
acceptable?		l		
Do the paperwork and sample labels			1	
agree?				
			1	
Preservation listed on the sample bottle(s)?				
Vous d'Est de			1	
How did the laboratory receive the				/ /II
sample(s)?				Hand delivered or Mail
Was the sample(s) received in a cooler?				
TOW Many coolers were received?		z']	Number of Coolers
What was used to lower the temp?			1 1	<u>√</u> Ice
<u> </u>			1	Cold Packs(s)
	<u>-</u>	ICT DE	1 004 70	Nothing
Was the Client contacted by phone?		MOI DE	LUW I	O BE COMPLETED ONLY IF APPLICABLE
	1]]	DateTime
Reason				• • • • • • • • • • • • • • • • • • • •
Additional Comments:				Initials
]			
		[
		- 1	- 1	
present, was the Custody of Seal intact?				
/as the sample(s) subcontracted? List the				
imples which were sent and tests	ŀ	T		Contract Lab:
quested:		l	- 1	
equesteu.		- 1	l i	Date/Time
		- 1		- INIA
		1	- 1,	Name of Staff Dolonsin - C
		- 1	1.	Name of Staff Releasing Sample:
				09.04 A75270-1 06/04 14:00_
ompleted By:	n	late: (06	06/04 14:00
		ale:	20	001
				Na = Not Applicable

Sample #: A75270-1

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/04/2004 14:00

Misc ID

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	10
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	2
Bromochloromethane	BDL	2	Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL.	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL BDL	2
Bromobenzene	BDL	2	n-Propylbenzene		2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene		2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	_	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
			,,	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 16-JUN-04

Authorized Signature: Line A. Barnulli

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

Collection Date: 06/08/2004 14:00

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : AE-14

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Log in Date : 06/09/2004 Account #: 04-01-04 Completion Date: 07/06/2004 Project #: 04-0007307

Analyte	Results	RDL	MCL	Analyte	Results	DD1	
1,1,1,2-Tetrachloroethane	BDL	2		1,1,1-Trichloroethane	BDL	RDL	MCL
1,1,2,2-Tetrachloroethane	BDL	2		1,1,2-Trichloroethane	BDL	2	200
1,1-Dichloroethane	BDL	2		1,1-Dichloroethene	BDL	2	5
1,1-Dichloropropene	BDL	2		1,2,3-Trichlorobenzene	BDL	2 2	7
1,2,3-Trichloropropane	BDL	2		1,2,4-Trichlorobenzene	BDL		
1,2,4-Trimethylbenzene	BDL	2		1,2-Dibromo-3-chloropropane	BDL	2	70
1,2-Dibromoethane	BDL	2		1,2-Dichlorobenzene	BDL	2	. 2
1,2-Dichloroethane	BDL	2	5	1,2-Dichloropropane	BDL	2	600
1,3,5-Trimethylbenzene	BDL	2		1,3-Dichlorobenzene	BDL.		5
1,3-Dichloropropane	BDL	2		1,4-Dichlorobenzene	BDL	2	
2,2-Dichloropropane	BDL	2		2-Butanone (MEK)	BDL	2	75
2-Hexanone	BDL	10		2-Methoxy-2-methylbutane (TAME)	BDL	10	
4-Methyl-2-pentanone (MIBK)	BDL	10		Acetone (TAME)	BDL	2	
Benzene	BDL	2	5	Bromobenzene	BDL	10	
Bromochloromethane	BDL	2		Bromodichloromethane		2	
Bromoform	BDL	2		Bromomethane	BDL BDL	2	
Carbon disulfide	BDL	2		Carbon tetrachloride	BDL	2	_
Chlorobenzene	BDL	2	100	Chloroethane	BDL	2	5
Chloroform	BDL	2		Chloromethane	BDL	2	
Dibromochloromethane	BDL	2		Dibromomethane	BDL	2	
Dichlorodifluoromethane	BDL	2		Diethyl ether	BDL	2	
Diisopropyl ether (DIPE)	BDL	2		Ethyl-t-butyl ether (ETBE)	BDL		
Ethylbenzene	BDL	2	700	Hexachlorobutadiene	BDL	2	
Isopropylbenzene	BDL	2		Methyl methacrylate	BDL	2	
Methyl-t-butyl ether (MTBE)	BDL	2		Methylene chloride	BDL	2	
Naphthalene	BDL	2		Styrene	BDL	2	5 100
Tetrachloroethene	3	2	5	Tetrahydrofuran (THF)	BDL	10	±00
Toluene	BDL	2	1000	Trichloroethene	BDL	2	5
Trichlorofluoromethane	BDL	2		Vinyl chloride	BDL	2	2
cis-1,2-Dichloroethene	BDL	2	70	cis-1,3-Dichloropropene	BDL	2	2
m/p-Xylenes	BDL	2		n-Butylbenzene	BDL	2	
n-Propylbenzene	BDL.	2		o-Chlorotoluene	BDL	2	
o-Xylene	BDL	2		p-Chlorotoluene	BDL	2	
p-Isopropyltoluene	BDL	2		sec-Butylbenzene	BDL	2	
tert-Butanol (TBA)	BDL	10		tert-Butylbenzene	BDL	_	
trans-1,2-Dichloroethene	BDL	2	100	trans-1,3-Dichloropropene	BDL	2	
				, o browner optopolic	יותם	2	

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

= milligrams per Liter

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

= Greater Than

= Less Than

= Below Detection Limit

mq/L

BDL

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

RDL = Reporting Detection Limit MCL = Maximum Contaminent Level rpt = vol_ws = Present/Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

: PLAISTOW

Category: IN HOUSE

Matrix : Aqueous

Collectby : S PERKINS/L. DESMARIS

Collection Date: 06/08/2004 14:05

Locator : AE-14 DUP

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Log in Date : 06/09/2004 Completion Date: 07/06/04

Account #: 04-01-04 Project #: 04-0007307

Misc ID

Analyte	Results	RDL.	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2		BDL	2
trans-1,2-Dichloroethene	BDL	2	tert-Butanol (TBA)	BDL	10
1,1-Dichloroethane	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	Diisopropyl ether (DIPE)	BDL	2
cis-1,2-Dichloroethene	BDL	2	2,2-Dichloropropane	BDL	2
Bromochloromethane	BDL	2	2-Butanone (MEK)	BDL	10
Tetrahydrofuran(THF)	BDL	10	Chloroform	BDL	2
Carbon tetrachloride	BDL	2	1,1-Dichloropropene	BDL	2
1,2-Dichloroethane	BDL	2	Benzene	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	1,1,1-Trichloroethane	BDL	2
1,2-Dichloropropane	BDL	2	Trichloroethene	BDL	2
Methyl methacrylate	BDL	2	Dibromomethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	Bromodichloromethane	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	trans-1,3-Dichloropropene	BDL	2
Dibromochloromethane	BDL	2	1,1,2-Trichloroethane	BDL	2
Tetrachloroethene	3	2	Toluene	BDL	2
2-Hexanone	BDL	10	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	2	1,2-Dibromoethane	BDL	2
Ethylbenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	BDL	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	BDL		tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL		p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene		2	Hexachlorobutadiene	BDL	2
-	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : AE-17D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

: 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 14:00

Misc ID

Log in Date

Sample #: A75270-4

Category: IN HOUSE

Matrix : Aqueous

Analyte Results RDL Analyte Results RDI. Dichlorodifluoromethane RDI. 10 Chloromethane BDL. 10 Vinyl chloride BDL 10 Bromomethane BDL 10 Chloroethane BDL 10 Trichlorofluoromethane BDL 10 Diethyl ether BDL 1,1-Dichloroethene BDL Acetone BDL Carbon disulfide BDL 10 Methylene chloride BDI. 10 tert-Butanol (TBA) BDL 50 trans-1,2-Dichloroethene BDL 1.0 Methyl-t-butyl ether (MTBE) BDL 10 1,1-Dichloroethane 52 10 Diisopropyl ether (DIPE) BDL 10 Ethyl-t-butyl ether (ETBE) RDI. 10 2,2-Dichloropropane BDL 10 cis-1,2-Dichloroethene 518 10 2-Butanone (MEK) BDL 50 Bromochloromethane \mathtt{BDL} 10 Chloroform BDL Tetrahydrofuran (THF) 1,1-Dichloropropene BDL BDL Carbon tetrachloride BDL 10 Benzene 1.0 1,2-Dichloroethane BDL 10 1,1,1-Trichloroethane 50 10 2-Methoxy-2-methylbutane (TAME) BDL 1.0 Trichloroethene 12 10 1,2-Dichloropropane BDL 10 Dibromomethane BDL 10 Methyl methacrylate BDI. 1.0 Bromodichloromethane BDL 10 cis-1,3-Dichloropropene BDL 10 trans-1,3-Dichloropropene BDI. 10 4-Methyl-2-pentanone (MIBK) BDL 50 1,1,2-Trichloroethane BDL 10 Dibromochloromethane BDL Toluene BDL 10 Tetrachloroethene BDL 1,3-Dichloropropane BDL 10 2-Hexanone BDL 50 1,2-Dibromoethane BDL 10 Chlorobenzene BDL 10 1,1,1,2-Tetrachloroethane BDL. 10 Ethylbenzene BDL 10 m/p-Xylenes BDL 1.0 o-Xylene BDL 10 Styrene BDL. 10 Bromoform BDL 1.0 Isopropylbenzene BDL 1.0 1,1,2,2-Tetrachloroethane BDL 1.0 1,2,3-Trichloropropane BDI. 10 Bromobenzene BDL. 10 n-Propylbenzene BDI. 10 o-Chlorotoluene BDL 10 p-Chlorotoluene BDL 10 1,3,5-Trimethylbenzene BDL 10 tert-Butylbenzene BDL 10 1,2,4-Trimethylbenzene BDL 10 sec-Butylbenzene BDL 1.0 1,3-Dichlorobenzene BDL 10 p-Isopropyltoluene BDL 10 1,4-Dichlorobenzene BDL 10 1,2-Dichlorobenzene RDI. 1.0 n-Butylbenzene BDL 1,2-Dibromo-3-chloropropane 10 BDL 10 1,2,4-Trichlorobenzene BDL 10 Hexachlorobutadiene BDT. 1.0

EPA Method : SW-8260

Naphthalene

Units: ug/L

Measure date: 22-JUN-04

Authorized Signature:

10

BDL

ug/L = micrograms per Liter

= Below Detection Limit

1,2,3-Trichlorobenzene

mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

BDL

Luca R. Barnel

10

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

= Less Than

Sample #: A75270-5

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : AE-18S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

: 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 13:55

Misc ID

Log in Date

Analyte Results RDI. Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride 50 2 Bromomethane BDL 2 Chloroethane 20 2 Trichlorofluoromethane BDT. 2 Diethyl ether BDI. 2 1,1-Dichloroethene BDL 2 Acetone BDL Carbon disulfide BDL Methylene chloride BDL tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene 6 2 Methyl-t-butyl ether (MTBE) BDL 2 1,1-Dichloroethane 56 2 Diisopropyl ether (DIPE) BDL 2 Ethyl-t-butyl ether (ETBE) BDI. 2 2,2-Dichloropropane BDL 2 cis-1,2-Dichloroethene 41 2 2-Butanone (MEK) BDL 10 Bromochloromethane BDI. Chloroform BDL 2 Tetrahydrofuran (THF) BDL 1,1-Dichloropropene BDL Carbon tetrachloride BDL Benzene 19 1,2-Dichloroethane 2 1,1,1-Trichloroethane 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 2 1,2-Dichloropropane BDL 2 Dibromomethane BDL 2 Methyl methacrylate BDL 2 Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene BDI. 2 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene 2.1 2 Tetrachloroethene BDL 2 1,3-Dichloropropane BDL 2-Hexanone BDL 1.2-Dibromoethane BDL Chlorobenzene BDL 1,1,1,2-Tetrachloroethane BDL Ethvlbenzene 22 2 m/p-Xylenes BDI. o-Xylene 2 9.8 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene 4.8 2 1,1,2,2-Tetrachloroethane BDL 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL n-Propylbenzene 2 4 3 2 o-Chlorotoluene BDI. 2 p-Chlorotoluene BDI. 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDI. 2 1,2,4-Trimethylbenzene 10 2 sec-Butylbenzene BDL 2 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene 3.6 2 n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene 7.4 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

= Less Than

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : AE-18D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 15:05

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL.	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL.	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

Il Barmelle

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

= Less Than

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

: PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-2S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 11:19

Category: IN HOUSE

Matrix : Aqueous

Misc ID

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL,	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	10
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	2
Bromochloromethane	BDL	2	Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2		BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	·	BDL	2
2-Hexanone	BDL	10	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	2	1,2-Dibromoethane	BDL	2
Ethylbenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	BDL	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL		p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	_	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	BDL	2	Hexachlorobutadiene	BDL	2
	RDT	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

= Less Than

Authorized Signature:

ug/L = micrograms per Liter

= Greater Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-2I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 12:29

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	D 1.	
Dichlorodifluoromethane	BDL	4	Chloromethane	Results	RDL
Vinyl chloride	BDL	4	Bromomethane	BDL	4
Chloroethane	BDL	4	Trichlorofluoromethane	BDL	4
Diethyl ether	BDL	4	1,1-Dichloroethene	BDL	4
Acetone	BDL	20	Carbon disulfide	4.3	4
Methylene chloride	BDL	4	tert-Butanol (TBA)	BDL	4
trans-1,2-Dichloroethene	BDL	4	Methyl-t-butyl ether (MTBE)	BDL	20
1,1-Dichloroethane	29	4	Diisopropyl ether (DIPE)	BDL	4
Ethyl-t-butyl ether (ETBE)	BDL	4	2,2-Dichloropropane	BDL	4
cis-1,2-Dichloroethene	314	4	2-Butanone (MEK)	BDL	4
Bromochloromethane	BDL	4	Chloroform	BDL	20
Tetrahydrofuran(THF)	BDL	20	1,1-Dichloropropene	BDL	4
Carbon tetrachloride	BDL	4	Benzene	BDL	4
1,2-Dichloroethane	5.3	4	1,1,1-Trichloroethane	19	4
2-Methoxy-2-methylbutane (TAME)	BDL	4	Trichloroethene	7.7	4
1,2-Dichloropropane	BDL	4	Dibromomethane	10	4
Methyl methacrylate	BDL	4	Bromodichloromethane	BDL	4
cis-1,3-Dichloropropene	BDL	4	trans-1,3-Dichloropropene	BDL	4
4-Methyl-2-pentanone (MIBK)	BDL	20	1,1,2-Trichloroethane	BDL	4
Dibromochloromethane	BDL	4	Toluene	BDL	4
Tetrachloroethene	5	4	1,3-Dichloropropane	BDL	4
2-Hexanone	BDL	20	1,2-Dibromoethane	BDL	4
Chlorobenzene	BDL	4	1,1,1,2-Tetrachloroethane	BDL	4
Ethylbenzene	BDL	4	m/p-Xylenes	BDL	4
o-Xylene	BDL	4	Styrene	BDL	4
Bromoform	BDL	4	Isopropylbenzene	BDL	4
1,1,2,2-Tetrachloroethane	BDL	4	1,2,3-Trichloropropane	BDL	4
Bromobenzene	BDL	4	n-Propylbenzene	BDL	4
o-Chlorotoluene	BDL	4	p-Chlorotoluene	BDL	4
1,3,5-Trimethylbenzene	BDL	4	tert-Butylbenzene	BDL	4
1,2,4-Trimethylbenzene	BDL	4	sec-Butylbenzene	BDL	4
1,3-Dichlorobenzene	BDL	4	p-Isopropyltoluene	BDL	4
1,4-Dichlorobenzene	BDL	4	1,2-Dichlorobenzene	BDL	4
n-Butylbenzene	BDL	4			4
1,2,4-Trichlorobenzene	BDL	4	1,2-Dibromo-3-chloropropane Hexachlorobutadiene		4
Naphthalene	BDL	4	1,2,3-Trichlorobenzene		4
		-	1,2,3-111chioropenzene	BDL	4

EPA Method : SW-8260

Units: ug/L

Measure date: 22-JUN-04

Authorized Signature: Luco A. Barumlu

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-2D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 00:18

Misc ID :

Sample #: A75270-9

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

Luco & Barulle

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram
MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-3S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 09:55

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDI.	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	_	_
Bromochloromethane	BDL	2	Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2		BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	BDL	2	Hexachlorobutadiene	BDL	2
•	מעם	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

Authorized Signature:

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

ug/L = micrograms per Liter BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-3I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Collection Date: 06/07/2004 11:20 Log in Date : 06/09/2004

Completion Date: 07/06/04

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomet hane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	10
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	2
Bromochloromethane	BDL	2	Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL,	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	3.1	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	<u>-</u>	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene		2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane		2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene		2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene		2
			, , , = ==============================	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-3D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 12:40

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	32	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	2.4	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	2.7	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
				חתפ	2

EPA Method : SW-8260

Units: ug/L

Report Comments: QC for t-Butanol was not w/in acceptable limits ranged 141 to 171%R; Limits 80 to 120%R.

Measure date: 17-JUN-04

Authorized Signature:

Luca de Barmelle

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

: PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-4S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 09:45

Category: IN HOUSE

Matrix : Aqueous

Misc ID

Analyte	Results	RDL	Pro-land a		
Dichlorodifluoromethane	BDL	2	Analyte	Results	RDL
Vinyl chloride	BDL	2	Chloromethane	BDL	2
Chloroethane	BDL	2	Bromomethane	BDL	2
Diethyl ether	BDL	2	Trichlorofluoromethane	BDL	2
Acetone	BDL	10	1,1-Dichloroethene	BDL	2
Methylene chloride	BDL	2	Carbon disulfide	BDL	2
trans-1,2-Dichloroethene	BDL		tert-Butanol (TBA)	BDL	10
1,1-Dichloroethane	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	Diisopropyl ether (DIPE)	BDL	2
cis-1,2-Dichloroethene	BDL	2	2,2-Dichloropropane	BDL	2
Bromochloromethane	BDL	2	2-Butanone (MEK)	BDL	10
Tetrahydrofuran (THF)		2	Chloroform	BDL	2
Carbon tetrachloride	BDL BDL	10	1,1-Dichloropropene	BDL	2
1,2-Dichloroethane	BDL	2	Benzene	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	1,1,1-Trichloroethane	BDL	2
1,2-Dichloropropane	BDL	2	Trichloroethene	BDL	2
Methyl methacrylate	BDL	2	Dibromomethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	Bromodichloromethane	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	2	trans-1,3-Dichloropropene	BDL	2
Dibromochloromethane	BDL	10	1,1,2-Trichloroethane	BDL	2
Tetrachloroethene		2	Toluene	BDL	2
2-Hexanone	BDL	2	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	10	1,2-Dibromoethane	BDL	2
Ethylbenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	BDL	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	BDL	2	Hexachlorobutadiene	BDL	2
F	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

= Less Than

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

Analyte

Chloromethane

Trichlorofluoromethane

Methyl-t-butyl ether (MTBE)

Diisopropyl ether (DIPE)

1,1-Dichloroethene

tert-Butanol (TBA)

2,2-Dichloropropane

1,1-Dichloropropene

1,1,1-Trichloroethane

Bromodichloromethane

1,1,2-Trichloroethane

1,3-Dichloropropane

1,2-Dibromoethane

Isopropylbenzene

n-Propylbenzene

p-Chlorotoluene

tert-Butylbenzene

p-Isopropyltoluene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

sec-Butylbenzene

1,2,3-Trichloropropane

trans-1,3-Dichloropropene

1,1,1,2-Tetrachloroethane

Trichloroethene

Dibromomethane

2-Butanone (MEK)

Chloroform

Benzene

Toluene

m/p-Xylenes

Styrene

Carbon disulfide

Bromomethane

: PLAISTOW

Collectby

: S PERKINS/L. DESMARIS

Results

BDL

BDI.

BDL

BDL

BDL

BDL

BDL

BDL

BDI.

BDT.

BDI.

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL.

BDI.

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDI.

RDI

2

2

2

2

10

2

2

2

10

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Locator : SH-4I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 12:00

Results

BDI.

BDL

BDL

BDL

BDL

BDL

BDL

BDL.

RDI.

BDI.

BDL

BDL

BDL

BDI.

BDL

BDI.

BDL

BDI.

BDL.

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL.

BDL

BDL

BDL

BDL

BDL

BDL

BDL

BDL

Units: ug/L

BDL

RDL

2

2

2

1.0

2

2

2

2

2

2

1.0

2

2

2

2

2

10

2

10

2

2

2

2

2

2

2

2

2

2

2

2

2

Analyte

Category: IN HOUSE

Matrix : Aqueous

Misc ID

Dichlorodifluoromethane

Vinyl chloride Chloroethane Diethyl ether Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane

Ethyl-t-butyl ether (ETBE) cis-1,2-Dichloroethene Bromochloromethane Tetrahydrofuran(THF) Carbon tetrachloride 1,2-Dichloroethane 2-Methoxy-2-methylbutane (TAME) 1,2-Dichloropropane Methyl methacrylate cis-1,3-Dichloropropene

Tetrachloroethene 2-Hexanone Chlorobenzene Ethylbenzene o-Xvlene Bromoform 1,1,2,2-Tetrachloroethane Bromobenzene o-Chlorotoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene

4-Methyl-2-pentanone (MIBK)

Dibromochloromethane

1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2,4-Trichlorobenzene Naphthalene

EPA Method : SW-8260 Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

= milligrams per Liter

BDL = Below Detection Limit

Sample #: A75270-15

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-4D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 13:00

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDI.	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					-

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

= Greater Than

Luco de Barmelle

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

MCL=Maximum Contaminent Level

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-15S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 13:47

Misc ID :

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDI.	2
Carbon tetrachloride	BDL	2	Benzene	BDL.	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDI.	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2		ษกค	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

Authorized Signature: /

Lucio de la

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent
J =Approximate Level

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit
mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-15I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 11:22

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyté	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	10
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	2
Bromochloromethane	BDL	2	Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec Butylbenzene	BDL.	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene		2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane		2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene		2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene		2
			· · · · · · · · · · · · · · · · · · ·	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

Authorized Signature: (

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Sample #: A75270-18

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-15D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 12:42

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 17-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Sample #: A75270-19

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-38S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 15:15

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					_

EPA Method : SW-8260

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter = Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS Locator : SH-41S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/08/2004 15:02

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	1.0
Bromochloromethane	BDL.	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					_

EPA Method : SW-8260 Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75270-21 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/07/2004 15:03

Log in Date : 06/09/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-43S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	24	2	Bromomethane	BDL	2
Chloroethane	4.9	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	2.1	2		BDL	10
1,1-Dichloroethane	28	2	Methyl-t-butyl ether (MTBE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	Diisopropyl ether (DIPE)	BDL	2
cis-1,2-Dichloroethene	83	2	2,2-Dichloropropane	BDL	2
Bromochloromethane	BDL	2	2-Butanone (MEK) Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10		BDL	2
Carbon tetrachloride	BDL	2	1,1-Dichloropropene	BDL	2
1,2-Dichloroethane	BDL	2	Benzene	2.8	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	1,1,1-Trichloroethane	12	2
1,2-Dichloropropane	BDL	2	Trichloroethene	BDL	2
Methyl methacrylate	BDL	2	Dibromomethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	Bromodichloromethane	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	trans-1,3-Dichloropropene	BDL	2
Dibromochloromethane	BDL	2	1,1,2-Trichloroethane Toluene	BDL	2
Tetrachloroethene	BDL	2		BDL	2
2-Hexanone	BDL	10	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	2	1,2-Dibromoethane	BDL	2
Ethylbenzene	3.9	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	7.6	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	2.4	2	tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	-	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	2.5	2	Hexachlorobutadiene	BDL	2
-	4.5	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Report Comments: Ms/MSD QC for naphthalene was not w/in acceptable limits - range 132 to 134%R. Limits 70 to130%R.

Measure date: 18-JUN-04

Authorized Signature:

Jusa & Barmille

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L. DESMARIS

Locator : SH-43S DUP

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/09/2004 Completion Date: 07/06/04

Collection Date: 06/07/2004 15:08

: Aqueous

Misc ID :

Matrix

Category: IN HOUSE

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDI. 2 Vinyl chloride 26 2 Bromomethane BDL 2 Chloroethane 5.1 2 Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1,1-Dichloroethene BDL 2 Acetone BDI. 10 Carbon disulfide BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene 2 Methyl-t-butyl ether (MTBE) BDL 2 1,1-Dichloroethane 28 2 Diisopropyl ether (DIPE) BDI. 2 Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDI. 2 cis-1,2-Dichloroethene 79 2 2-Butanone (MEK) BDL Bromochloromethane BDL 2 Chloroform BDL 2 Tetrahydrofuran(THF) BDL 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride BDI. 2 Benzene 3.1 2 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane 11 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 2 1,2-Dichloropropane BDL Dibromomethane BDI. 2 Methyl methacrylate BDL 2 Bromodichloromethane BDT. 2 cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene BDL. 2 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL 2 Tetrachloroethene BDL 2 1,3-Dichloropropane BDL 2 2-Hexanone BDI. 1.0 1,2-Dibromoethane BDL 2 Chlorobenzene BDI. 1,1,1,2-Tetrachloroethane 2 BDL 2 Ethylbenzene 4.1 m/p-Xylenes BDL 2 o-Xylene 8.2 2 Styrene BDL 2 Bromoform BDL Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDL 2 1,2,3-Trichloropropane BDL. 2 Bromobenzene BDL 2 n-Propylbenzene BDI. 2 o-Chlorotoluene BDL 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 1,2,4-Trimethylbenzene 2.5 2 sec-Butylbenzene BDL 1,3-Dichlorobenzene BDI. 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL 2 n-Butylbenzene BDL 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDI. 2 Naphthalene 3.2 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260 Uni

Units: ug/L

Measure date: 18-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level = Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent
J =Approximate Level

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter
RDL=Reporting Detection Limit

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026100-IN DES

DUE DATE:

INVOICE DATE: 07/06/04 08/05/04

INVOICE

BEEDE WASTE OIL- 2596

RICHARD PEASE

RIFS PLAISTOW

Attn:

PAGE: 1

Sales cd	Description	Quantity	Cost	Amount
	A75270-1			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75270-10			
18260	VOA-8260 AQUEOUS A75270-11	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75270-12	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75270-13			}
10200	VOA-8260 AQUEOUS A75270-14	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75270-15	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75270-16			
18280	VOA-8260 AQUEOUS A75270-17	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75270-18	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75270-19			
10200	RVOA-8260 AQUEOUS BA75270-2	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120 00	г <u>Т</u> 20.00 ¬
		1.000	120,00 Invoice Total:	L — — J

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026100

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026100-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

08/05/04

Sales cd	Description	Quantity	/ Cost	Amount
		Quantity	COST	Amount
18260	A75270-20 VOA-8260 AQUEOUS A75270-21	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-22	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-3	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-4	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-5	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-6	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-7	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-8	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS A75270-9	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	REVIEW THIS INVOICE THOM BEFORE MONTH'S END; PAYN	ROUGHLY; MAKE ALL MENT IS AUTOMATIC	CHANGES FROM FUND	
			Invoice Total:	$[\underline{5},\overline{640},\overline{00}]$

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

2,640.007

Project Number: 04-0007307

Invoice Number: 0026100

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Comments:____ Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697 # of Containe rs Matrix Date/Time Sample Location /ID 8260B Lab ID # Sampled Other / Notes (For Lab Use Only) AQ TRIP GLANK 6/9/04 A75371-1 15:00 06/09 15:00 AO A753/1 + SH-19I 6/10/04 06/09 13:27 13/27 AQ SH-19D A75371-3 14:02 06/09 14:02 AQ SH-305 12:17 A75371-4 06/09 12:17 AQ 5H-20I 11.17 A75371-5 ^' '^0 11:17 AQ SH-20D 10:42 A75371-6 06/09 10:42 AQ AQ AQ AQ AQ AQ Preservation: HCL and ice Relinquished By Caha lamana Date and Time 6/10/04 15:30 Received By_____ Matrix: $A = Air S = Soil AQ = Aqueous \pi Other: _____$ Received For Laboratory By Date 7-07-Relinquished By _____Date and Time Section No.: 22.0 of _____ Data Reviewed By Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

FOR LABORATORY USE ONLY

Physical Inspection of the			 -	THE CONTROL OF THE CO
Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
AUJEL I IPPA I # ALLEGO		<u> </u>		y seven comments and Sample Information
blank	レ			Project (EPA) # CT - CC - CC - CC - CC - CC - CC - CC
Condition of sample(s) acceptable?			l	Temperature 3. C
I CHUCK TOT TERKAGE BEAGLESS.				remperature °C
bubbles?				
Was the paperwork submitted adequate				
acceptable?				
Do the paperwork and sample labels agree?				
Preservation listed on the sample bottle(s)?			 	
How did the laboratory receive the sample(s)?				Hand delivered or
Was the sample(s) received in a control				Mail
TOW INGITY COOLERS WERE PARKETED AND I	Г			Number of Coolers
What was used to lower the temp?				lce
- ionor the temp?	1		1 1	Cold Packs(s)
				M = 41.1
Was the Client contacted by phone?	L	IST BE	LOW TO	Date: Times
	l	I		DateTime
Reason		- 1		
Additional Comments:				Initials
		1		
		ı		
	- 1		- 1	
	1	- 1	1	
f present, was the Custody of Seal intact?				
vas tile SainDie(s) sitheonteootodo i :				
amples which were sent and tests	1		10	Contract Lab:
equested:		- 1	- 1	
			Ī	Date/Time
			. N	lame of Staff Releasing Sample: P1531215:00
ompleted By:				193 - 9

.1A = Not Applicable

Sample #: A75371-1

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/10/2004 Completion Date: 07/06/04

Collection Date: 06/09/2004 15:00

Misc ID :

Analyte	Results	RDL	Analyte	Results	DDI
Dichlorodifluoromethane	BDL	2	Chloromethane	Results BDL	RDL 2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					_

EPA Method : SW-8260

Units: ug/L

Measure date: 23-JUN-04

Authorized Signature: Lines A. Barini

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent
J =Approximate Level

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

Collection Date: 06/10/2004 13:27

Log in Date : 06/10/2004

Completion Date: 07/06/2004

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

: PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-19I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

Analyte	Results	RDL	MCL	Analyte	Results	RDL	MCT
1,1,1,2-Tetrachloroethane	BDL	2		1,1,1-Trichloroethane	BDL	2	MCL 200
1,1,2,2-Tetrachloroethane	BDL	2		1,1,2-Trichloroethane	BDL	2	200 5
1,1-Dichloroethane	BDL	2		1,1-Dichloroethene	BDL	2	5 7
1,1-Dichloropropene	BDL	2		1,2,3-Trichlorobenzene	BDL	2	,
1,2,3-Trichloropropane	BDL	2		1,2,4-Trichlorobenzene	BDL	2	7.0
1,2,4-Trimethylbenzene	BDL	2		1,2-Dibromo-3-chloropropane	BDL	2	70
1,2-Dibromoethane	BDL	2		1,2-Dichlorobenzene	BDL	2	. 2
1,2-Dichloroethane	BDL	2	5	1,2-Dichloropropane	BDL	2	600
1,3,5-Trimethylbenzene	BDL	2		1,3-Dichlorobenzene	BDL	2	5
1,3-Dichloropropane	BDL	2		1,4-Dichlorobenzene	BDL	2	
2,2-Dichloropropane	BDL	2		2-Butanone (MEK)	BDL	10	75
2-Hexanone	BDL	10		2-Methoxy-2-methylbutane (TAME)	BDL	2	
4-Methyl-2-pentanone (MIBK)	BDL	10		Acetone	BDL	10	
Benzene	BDL	2	5	Bromobenzene	BDL	2	
Bromochloromethane	BDL	2		Bromodichloromethane	BDL	2	
Bromoform	BDL	2		Bromomethane	BDL	2	
Carbon disulfide	BDL	2		Carbon tetrachloride	BDL	2	r
Chlorobenzene	BDL	2	100	Chloroethane	BDL	2	5
Chloroform	BDL	2		Chloromethane	BDL	2	
Dibromochloromethane	BDL	2		Dibromomethane	BDL	2	
Dichlorodifluoromethane	BDL	2		Diethyl ether	BDL	2	
Diisopropyl ether (DIPE)	BDL	2		Ethyl-t-butyl ether (ETBE)	BDL	2	
Ethylbenzene	BDL	2	700	Hexachlorobutadiene	BDL	2	
Isopropylbenzene	BDL	2		Methyl methacrylate	BDL	2	
Methyl-t-butyl ether (MTBE)	2.2	2		Methylene chloride	BDL	2	5
Naphthalene	BDL	2		Styrene	BDL	2	100
Tetrachloroethene	BDL	2	5	Tetrahydrofuran (THF)	BDL	10	100
Toluene	BDL	2	1000	Trichloroethene	BDL	2	5
Trichlorofluoromethane	BDL	2		Vinyl chloride	BDL	2	2
cis-1,2-Dichloroethene	BDL	2	70	cis-1,3-Dichloropropene	BDL	2	_
m/p-Xylenes	BDL	2		n-Butylbenzene	BDL	2	
n-Propylbenzene	BDL	2		o-Chlorotoluene	BDL	2	
o-Xylene	BDL	2		p-Chlorotoluene	BDL	2	
p-Isopropyltoluene	BDL	2		sec-Butylbenzene	BDL	2	
tert-Butanol (TBA)	BDL	10		tert-Butylbenzene	BDL	2	
trans-1,2-Dichloroethene	BDL	2	100	trans-1,3-Dichloropropene	BDL	2	
				· F ··· - F			

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

Measure date: 22-JUN-04

Authorized Signature,

ug/L = micrograms per Liter

= Greater Than

= Less Than

mg/L = milligrams per Liter = Below Detection Limit BDL

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

= Present/Absent

RDL = Reporting Detection Limit MCL = Maximum Contaminent Level rpt = vol_ws

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

: PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-19D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log	in	Date	≘	:	06/10/2004
Comp	olet	cion	Date	:	07/06/2004

Collection Date: 06/10/2004 14:02

Analyte	Results	RDL	MCL	Analyte	Results	RDL	MCL
1,1,1,2-Tetrachloroethane	BDL	2		1,1,1-Trichloroethane	BDL	2	200
1,1,2,2-Tetrachloroethane	BDL	2		1,1,2-Trichloroethane	BDL	2	5
1,1-Dichloroethane	BDL	2		1,1-Dichloroethene	BDL	2	7
1,1-Dichloropropene	BDL	2		1,2,3-Trichlorobenzene	BDL	2	
1,2,3-Trichloropropane	BDL	2		1,2,4-Trichlorobenzene	BDL	2	70
1,2,4-Trimethylbenzene	BDL	2		1,2-Dibromo-3-chloropropane	BDL	2	. 2
1,2-Dibromoethane	BDL	2		1,2-Dichlorobenzene	BDL	2	600
1,2-Dichloroethane	BDL	2	5	1,2-Dichloropropane	BDL	2	5
1,3,5-Trimethylbenzene	BDL	2		1,3-Dichlorobenzene	BDL	2	
1,3-Dichloropropane	BDL	2		1,4-Dichlorobenzene	BDL	2	75
2,2-Dichloropropane	BDL	2		2-Butanone (MEK)	BDL	10	
2-Hexanone	BDL	10		2-Methoxy-2-methylbutane (TAME)	BDL	2	
4-Methyl-2-pentanone (MIBK)	BDL	10		Acetone	BDL	10	
Benzene	BDL	2	5	Bromobenzene	BDL	2	
Bromochloromethane	BDL	2		Bromodichloromethane	BDL	2	
Bromoform	BDL	2		Bromomethane	BDL	2	
Carbon disulfide	BDL	2		Carbon tetrachloride	BDL	2	5
Chlorobenzene	BDL	2	100	Chloroethane	BDL	2	
Chloroform	BDL	2		Chloromethane	BDL	2	
Dibromochloromethane	BDL	2		Dibromomethane	BDL	2	
Dichlorodifluoromethane	BDL	2		Diethyl ether	BDL	2	
Diisopropyl ether (DIPE)	BDL	2		Ethyl-t-butyl ether (ETBE)	BDL	2	
Ethylbenzene	BDL	2	700	Hexachlorobutadiene	BDL	2	
Isopropylbenzene	BDL	2		Methyl methacrylate	BDL	2	
Methyl-t-butyl ether (MTBE)	BDL	2		Methylene chloride	BDL	2	5
Naphthalene	BDL	2		Styrene	BDL	2	100
Tetrachloroethene	BDL	2	5	Tetrahydrofuran (THF)	BDL	10	
Toluene	BDL	2	1000	Trichloroethene	BDL	2	5
Trichlorofluoromethane	BDL	2		Vinyl chloride	BDL	2	2
cis-1,2-Dichloroethene	BDL	2	70	cis-1,3-Dichloropropene	BDL	2	
m/p-Xylenes	BDL	2		n-Butylbenzene	BDL	2	
n-Propylbenzene	BDL	2		o-Chlorotoluene	BDL	2	
o-Xylene	BDL	2		p-Chlorotoluene	BDL	2	
p-Isopropyltoluene	BDL	2		sec-Butylbenzene	BDL	2	
tert-Butanol (TBA)	BDL	10		tert-Butylbenzene	BDL	2	
trans-1,2-Dichloroethene	BDL	2	100	trans-1,3-Dichloropropene	BDL	2	

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

Measure date: 22-JUN-04

Authorized Signature:

ug/L = micrograms per Liter /

= Greater Than

= Less Than

P-À

BDL

= Below Detection Limit ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

= Present/Absent

mg/L = milligrams per Liter

RDL = Reporting Detection Limit MCL = Maximum Contaminent Level rpt = vol_ws

Collection Date: 06/10/2004 12:17

Log in Date : 06/10/2004

Completion Date: 07/06/2004

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

Collectby : S PERKINS/L DESMARAIS Locator : SH-20S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	MCL	Analyte	Results	RDL	MCL
1,1,1,2-Tetrachloroethane	BDL	2		1,1,1-Trichloroethane	BDL	2	200
1,1,2,2-Tetrachloroethane	BDL	2		1,1,2-Trichloroethane	BDL	2	5
1,1-Dichloroethane	BDL	2		1,1-Dichloroethene	BDL	2	7
1,1-Dichloropropene	BDL	2		1,2,3-Trichlorobenzene	BDL	2	
1,2,3-Trichloropropane	BDL	2		1,2,4-Trichlorobenzene	BDL	2	70
1,2,4-Trimethylbenzene	BDL	2		1,2-Dibromo-3-chloropropane	BDL	2	. 2
1,2-Dibromoethane	BDL	2		1,2-Dichlorobenzene	BDL	2	600
1,2-Dichloroethane	BDL	2	5	1,2-Dichloropropane	BDL	2	5
1,3,5-Trimethylbenzene	BDL	2		1,3-Dichlorobenzene	BDL	2	
1,3-Dichloropropane	BDL	2		1,4-Dichlorobenzene	BDL	2	75
2,2-Dichloropropane	BDL	2		2-Butanone (MEK)	BDL	10	
2-Hexanone	BDL	10		2-Methoxy-2-methylbutane (TAME)	BDL	2	
4-Methyl-2-pentanone (MIBK)	BDL	10		Acetone	BDL	10	
Benzene	BDL	2	5	Bromobenzene	BDL	2	
Bromochloromethane	BDL	2		Bromodichloromethane	BDL	2	
Bromoform	BDL	2		Bromomethane	BDL	2	
Carbon disulfide	BDL	2		Carbon tetrachloride	BDL	2	5
Chlorobenzene	BDL	2	100	Chloroethane	BDL	2	
Chloroform	BDL	2		Chloromethane	BDL	2	
Dibromochloromethane	BDL	2		Dibromomethane	BDL	2	
Dichlorodifluoromethane	BDL	2		Diethyl ether	BDL	2	
Diisopropyl ether (DIPE)	BDL	2		Ethyl-t-butyl ether (ETBE)	BDL	2	
Ethylbenzene	BDL	2	700	Hexachlorobutadiene	BDL	2	
Isopropylbenzene	BDL	2		Methyl methacrylate	BDL	2	
Methyl-t-butyl ether (MTBE)	2.3	2		Methylene chloride	BDL	2	5
Naphthalene	BDL	2		Styrene	BDL	2	100
Tetrachloroethene	BDL	2	5	Tetrahydrofuran(THF)	BDL	10	
Toluene	BDL	2	1000	Trichloroethene	BDL	2	5
Trichlorofluoromethane	BDL	2		Vinyl chloride	BDL	2	2
cis-1,2-Dichloroethene	BDL	2	70	cis-1,3-Dichloropropene	BDL	2	
m/p-Xylenes	BDL	2		n-Butylbenzene	BDL	2	
n-Propylbenzene	BDL	2		o-Chlorotoluene	BDL	2	
o-Xylene	BDL	2		p-Chlorotoluene	BDL	2	
p-Isopropyltoluene	BDL	2		sec-Butylbenzene	BDL	2	
tert-Butanol (TBA)	BDL	10		tert-Butylbenzene	BDL	2	

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

Measure date: 22-JUN-04

trans-1,2-Dichloroethene

Authorized Signature:

2

mg/L = milligrams per Liter

ug/L = micrograms per Liter

BDL.

= Greater Than

trans-1,3-Dichloropropene

= Less Than

2

BDL

= Below Detection Limit

mg/kg = milligrams per Kilogram

P-A = Present/Absent RDL = Reporting Detection Limit MCL = Maximum Contaminent Level rpt = vol_ws

100

Category: IN HOUSE

Matrix : Aqueous

Log in Date

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Analyte

Site

: PLAISTOW

Collectby

: S PERKINS/L DESMARAIS

: SH-20I Locator

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

Results

RDL

MCL

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/20	004
Analyte	Results
1,1,1,2-Tetrachloroethane	BDL
1,1,2,2-Tetrachloroethane	BDL
1,1-Dichloroethane	BDL

Collection Date: 06/10/2004 11:17

: 06/10/2004

RDL

MCL

BDL 2 1,1,1-Trichloroethane BDL 2 200 BDI. 2 1,1,2-Trichloroethane BDL 2 5 BDL 2 1,1-Dichloroethene BDL 2 7 1,1-Dichloropropene RDI. 2 1,2,3-Trichlorobenzene BDL 2 1,2,3-Trichloropropane BDL 2 1,2,4-Trichlorobenzene BDI. 2 70 1,2,4-Trimethylbenzene BDL 1,2-Dibromo-3-chloropropane 2 BDL 2 . 2 1,2-Dibromoethane BDL 1,2-Dichlorobenzene BDL 600 1,2-Dichloroethane BDL 2 5 1,2-Dichloropropane BDL 5 1,3,5-Trimethylbenzene BDI. 2 1,3-Dichlorobenzene BDL 1,3-Dichloropropane BDL 2 1,4-Dichlorobenzene BDL 2 75 2,2-Dichloropropane BDI. 2 2-Butanone (MEK) BDL 1.0 2-Hexanone BDL 1.0 2-Methoxy-2-methylbutane (TAME) BDI. 2 4-Methyl-2-pentanone (MIBK) BDL 10 Acetone BDL 10 Benzene BDL 2 Bromobenzene BDL 2 Bromochloromethane BDL Bromodichloromethane BDL 2 Bromoform BDL Bromomethane BDL Carbon disulfide BDL 2 Carbon tetrachloride BDL 2 5 Chlorobenzene BDL 2 100 Chloroethane BDL 2 Chloroform BDL 2 Chloromethane BDL 2 Dibromochloromethane BDL 2 Dibromomethane BDL 2 Dichlorodifluoromethane BDL. 2 Diethyl ether BDI. 2 Diisopropyl ether (DIPE) BDL 2 Ethyl-t-butyl ether (ETBE) BDL 2 Ethylbenzene BDL 2 Hexachlorobutadiene 700 BDL 2 Isopropylbenzene BDL Methyl methacrylate BDL 2 Methyl-t-butyl ether (MTBE) Methylene chloride BDL 5 Naphthalene Styrene BDL 100 Tetrachloroethene BDL 2 Tetrahydrofuran(THF) BDL Toluene BDL 2 1000 Trichloroethene BDL 2 5 Trichlorofluoromethane BDL 2 Vinyl chloride BDL 2 cis-1,2-Dichloroethene BDL 2 70 cis-1,3-Dichloropropene BDL 2 m/p-Xylenes BDI. 2 n-Butylbenzene BDL 2 n-Propylbenzene BDL 2 o-Chlorotoluene BDL. 2 o-Xylene BDL 2 p-Chlorotoluene BDL 2 p-Isopropyltoluene BDL sec-Butylbenzene BDL tert-Butanol (TBA) BDL 10 tert-Butylbenzene BDL trans-1,2-Dichloroethene BDL 100 trans-1,3-Dichloropropene BDL

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

Measure date: 22-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

= Greater Than

= Less Than

= Below Detection Limit P-A = Present/Absent

mg/L = milligrams per Liter

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

= Reporting Detection Limit MCL = Maximum Contaminent Level rpt

Collection Date: 06/10/2004 10:42

Log in Date : 06/10/2004

Completion Date: 07/06/2004

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

Collectby : S PERKINS/L DESMARAIS Locator : SH-20D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	MCL	Analyte	Results	RDL	MCL
1,1,1,2-Tetrachloroethane	BDL	2		1,1,1-Trichloroethane	BDL	2	200
1,1,2,2-Tetrachloroethane	BDL	2		1,1,2-Trichloroethane	BDL	2	5
1,1-Dichloroethane	BDL	2		1,1-Dichloroethene	BDL	2	7
1,1-Dichloropropene	BDL	2		1,2,3-Trichlorobenzene	BDL	2	,
1,2,3-Trichloropropane	BDL	2		1,2,4-Trichlorobenzene	BDL	2	70
1,2,4-Trimethylbenzene	BDL	2		1,2-Dibromo-3-chloropropane	BDL	2	•
1,2-Dibromoethane	BDL	2		1,2-Dichlorobenzene	BDL	2	. 2 600
1,2-Dichloroethane	BDL	2	5	1,2-Dichloropropane	BDL	2	5
1,3,5-Trimethylbenzene	BDL	2		1,3-Dichlorobenzene	BDL	2	5
1,3-Dichloropropane	BDL	2		1,4-Dichlorobenzene	BDL	2	75
2,2-Dichloropropane	BDL	2		2-Butanone (MEK)	BDL	10	75
2-Hexanone	BDL	10		2-Methoxy-2-methylbutane (TAME)	BDL	2	
4-Methyl-2-pentanone (MIBK)	BDL	10		Acetone	BDL	10	
Benzene	BDL	2	5	Bromobenzene	BDL	2	
Bromochloromethane	BDL	2		Bromodichloromethane	BDL	2	
Bromoform	BDL	2		Bromomethane	BDL	2	
Carbon disulfide	BDL	2		Carbon tetrachloride	BDL	2	5
Chlorobenzene	BDL	2	100	Chloroethane	BDL	2	5
Chloroform	BDL	2		Chloromethane	BDL	2	
Dibromochloromethane	BDL	2		Dibromomethane	BDL	2	
Dichlorodifluoromethane	BDL	2		Diethyl ether	BDL	2	
Diisopropyl ether (DIPE)	BDL	2		Ethyl-t-butyl ether (ETBE)	BDL	2	
Ethylbenzene	BDL	2	700	Hexachlorobutadiene	BDL	2	
Isopropylbenzene	BDL	2		Methyl methacrylate	BDL	2	
Methyl-t-butyl ether (MTBE)	BDL	2		Methylene chloride	BDL	2	5
Naphthalene	BDL	2		Styrene	BDL	2	100
Tetrachloroethene	BDL	2	5	Tetrahydrofuran (THF)	BDL	10	100
Toluene	BDL	2	1000	Trichloroethene	BDL	2	5
Trichlorofluoromethane	BDL	2		Vinyl chloride	BDL	2	2
cis-1,2-Dichloroethene	BDL	2	70	cis-1,3-Dichloropropene	BDL	2	2
m/p-Xylenes	BDL	2		n-Butylbenzene	BDL	2	
n-Propylbenzene	BDL	2		o-Chlorotoluene	BDL	2	
o-Xylene	BDL	2		p-Chlorotoluene	BDL	2	
p-Isopropyltoluene	BDL	2		sec-Butylbenzene	BDL	2	
tert-Butanol (TBA)	BDL	10		tert-Butylbenzene	BDL	2	
trans-1,2-Dichloroethene	BDL	2	100	trans-1,3-Dichloropropene	BDL	2	

Analytes run in units of : ug/L Analytes run by EPA Method : SW-8260

Measure date: 23-JUN-04

Authorized Signature:

= Greater Than

P-A = Present/Absent

mg/L = milligrams per Liter

BDL = Below Detection Limit

ug/L = micrograms per Liter ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

RDL = Reporting Detection Limit MCL = Maximum Contaminent Level rpt = vol_ws

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments: _____ Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697

Sample Location /ID	Date/Time Sampled	# of Containe	Matrix	8260B	Other / Notes	Lab ID # (For Lab Use Only)
TRIP BLANK	6/11/04 16:00	, 2	AQ	./		A75678-1
AE-I	6/15/64 10:13	7	AQ			A75678-2 06/15 10:12
AE-2	11:23	F	AQ			A75678-3
AE-4	14713	r /	AQ			A75678-4 06/15 14:12
AE-21	6/16/61 11:25	>	AQ			A75678-5 06/16 11:25
AE-22	11:43	+	AQ			A75678-6
SH-125	6 15 64 13.05		AQ			A75678-7 06/15 13:05
SH-125dup	13.08	5	AQ			A75678-8 06/15 13:08
SH-145	12:05		AQ			A75678-9
54-141	11:05		AQ			A75678-10
SH-140	10:15		AQ			A75678-11 06/15 10:15
SH-215	6/14/04 12:14		AQ	•		A75678-12 - 06/1/5 12:14

Preservation: HCL and ice		
Relinquished By	Date and Time 6/16/04 13:35 Received By	Matrix: A= Air S= Soil AQ= Aqueous π Other:
Relinquished By		By (). Section No.: 22.0
Page of	Data Reviewed By	Pate 07-07-04 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Collected By & Phone#

S. Perkins x 6805 and Leah Desmarais x 0697

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments:

Sample Location /ID	Date/Time Sampled	# of Contain rs Ratrix	8260B	Other / Notes	Lab ID # (For Lab Use Only)
SH-31I	614/04 11:13	AQ			A75678-13 06/14 11:12
SH-01D	10:17	AQ			A75678-14
SH-963	14:00	AQ			A75678-15 06/14 14:00
ZH-982	11.30	AQ			A75678-16 06/14 11:20
2PG-4Z	(3:40	AQ			A75678-17 06/14 12:40
SH-335	6/16/64 13:37	AQ			A75678-18
SH-445	6/14/04 14/11	AQ			A75678-19 06/14 14:11
SH-S65	6/16/64 9/15	AQ			A75678-20 06/16 09:15
SH-57S	10:20	AQ			A75678-21
SWWP-4	6115/6/ 14:34	AQ			06/16 10:20 — A75678-22
SWW 9-10	6/14/04 18:15	AQ			A75678-23 06/14 13:15
SWWP-12		AQ			A75678-24 06/15 14:55
Preservation: HCL and ice					
Relinquished By SOMMONDS	Date and Time() ()/()	13:35	_Received By	Matrix: A= Air	S= Soil AQ= Aqueous π Other:
Relinquished By	Date and Time		_ Received For Labora	atory By (Section No.: 22.0
Page $\frac{3}{2}$ of $\frac{3}{2}$	Data Reviewed	I ву <u>С</u>	.B	Date 07 - 07 - 01	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Sample Location /ID	Date/Time Sampled	# of Containe rs	Matrix	8260B		Other / Notes	Lab ID # (For Lab Use Only)
2 W P-14	6/15/04 13:55	1	AQ	V			A75678-25 06/15 13:59
SWWP-15	14:30		AQ				A75678-26 06/15 14:39
SWWP-15 SWWP-17	6/14/04 11:55	1	AQ				A75678-27
			AQ				-
			AQ				
			AQ				
			AQ				
			AQ		-		
			AQ				
			AQ				
			AQ				
			AQ				
nquished By	Date and Time 6/16/04	1 13.	35	Received By			S= Soil AQ= Aqueous π Other:

BEEDE WELLS Site # 04-000-7307

VC)Cs
	mples
AE-1	SH-22S
AE-2	SH-22D
AE-4 }	SH-22R
AE-12	SH-23S
AE-14	SH-23I
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-24I
AE-21	SH-24D
AE-22	SH-25S
	SH-25I
SH-2S	SH-25D
SH-21	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-3I	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-41	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S)	SH-56S
SH-14I *	SH-57S
SH-14D ₄	
SH-15S	7.00
SH-15I	
SH-15D	SWWP-4
SH-19S	SWWP-10
SH-19I	SDWP-121
SH-19D	WP-14
SH-20S	SUWP-15
SH-20I	SW WP-17
SH-20D	WP-18
SH-21S	
SH-21I	
SH-21D	
+ 4 1 1 1 4 11 11 11	

AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D	Natural Attenuati 27 samples	on
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	27 Samples	
AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	-AB2-LD	
AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23D SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D	AE-12	
AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D	AE-14	
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	AE-17D	
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	AE-18S	
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D	AE-18D	
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	SH-2S	
SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22D SH-23S SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S	SH-2D	
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22D SH-23S SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S	SH-3S	
SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	SH-31	
SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D	SH-3D	
SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23D SH-23D SH-24S SH-24S SH-24I	SH-4S	
SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D	SH-41	
SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D	SH-4D	
SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D		
SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D	SH-15I	
SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	SH-22S	
SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	SH-22D	
SH-23I SH-23D SH-24S SH-24I SH-24D	SH-22R	
SH-23D SH-24S SH-24I SH-24D	SH-23S	
SH-24S SH-24I SH-24D	SH-231	
SH-241 SH-24D	SH-23D	
SH-24D	SH-24S	
	SH-241	
SH-43S	SH-24D	
	SH-43S	
		-
-		
	PALE.	

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

FOR LABORATORY USE ONLY

Physical Inspection of the sample	T			OR LABORATORY USE ONLY
Containers and submitted nonemark	Yes	No	NA	Inspection Comments and Sample Information
Temperature of the sample or temperature	7	 	+	Project (EPA) # O (-(Y)()) 30 7
Clark	1	1	ļ	
Condition of sample(s) acceptable?		 -	 	Temperature °C
(Check for leakage, breakage, and				
volume) Do VOA's or Radon have air bubbles?				
Was the paperwork submitted adequate			 -	
acceptable?				
Do the paperwork and sample labels agree?				
Preservation listed on the sample				
DOTTIC(S)?				
How did the laboratory receive the sample(s)?				Hand delivered or
Was the sample(s) received in a cooler?				Mail
TOW INARY COOLERS Were received?]	T		Number of Coolers
What was used to lower the temp?		1	j	lce
				Cold Packs(s)
		IST BEI	OW TO	Nothing
Was the Client contacted by phone?	— ř	ior bet	JOW IC	O BE COMPLETED ONLY IF APPLICABLE Date Time
Reason			İ	Date Time
Additional Comments:			ı	Initials
reactional Comments:				
1	- 1	1	İ	
1			İ	
F	1			
f present, was the Custody of Seal intact?				
Was the sample(s) subcontracted? List the amples which were sent and tests				Contract Lab:
equested:			i	Date/Time O
			1	Name of Staff Releasing Sample:
Completed By:			-	Value of Staff Releasing Sample:
ompieted by:	D	ate:	J0:	(E) () C
				NA = Not Applicable

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/11/2004 16:00

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 23-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-1

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 10:12

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	3.5	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	9.2	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-2

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 11:27

Sample #: A75678-3

Category: IN HOUSE

Matrix : Aqueous

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL.	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	7.3	2	m/p-Xylenes	BDL	2
o-Xylene	14	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	7.3	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	10	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	22	2	sec-Butylbenzene	4	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	3	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	11	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: (/

Luco & Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : AE-4

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:12

Misc ID

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDL 2 Chloroethane BDL Trichlorofluoromethane BDL 2 Diethyl ether BDL 1,1-Dichloroethene BDL 2 Acetone Carbon disulfide 55 10 BDL Methylene chloride BDL tert-Butanol (TBA) 2 RDI. 1.0 trans-1,2-Dichloroethene 2 RDI. Methyl-t-butyl ether (MTBE) BDL 1.1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDL cis-1,2-Dichloroethene BDL 2-Butanone (MEK) BDL Bromochloromethane BDL Chloroform BDL Tetrahvdrofuran (THF) BDL 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride 2 BDL Benzene BDI. 1,2-Dichloroethane 2 1,1,1-Trichloroethane BDL. BDL 2-Methoxy-2-methylbutane (TAME) 2 Trichloroethene BDL BDL 1,2-Dichloropropane 2 RDT. Dibromomethane BDL Methyl methacrylate BDL Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene BDL 4-Methyl-2-pentanone (MIBK) BDL 1.0 1,1,2-Trichloroethane BDL Dibromochloromethane BDL Toluene BDL Tetrachloroethene BDL 1,3-Dichloropropane BDL 2-Hexanone BDL 10 1.2-Dibromoethane BDI. Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDI. Ethylbenzene 19 2 m/p-Xylenes 36 o-Xylene BDL 2 Styrene BDL Bromoform BDI. 2 Isopropylbenzene 4.9 1,1,2,2-Tetrachloroethane 2 BDL 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL 2 n-Propylbenzene 6.9 o-Chlorotoluene BDL 2 p-Chlorotoluene BDL 1,3,5-Trimethylbenzene 17 tert-Butylbenzene BDL 1,2,4-Trimethylbenzene 46 sec-Butylbenzene 2.4 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene 2.3 1,4-Dichlorobenzene 2 BDL 1,2-Dichlorobenzene BDL n-Butylbenzene BDI. 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL Naphthalene 1,2,3-Trichlorobenzene 45 BDL

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature Lines A. Barullu

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-21

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 11:25

Misc ID

Sample #: A75678-5

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

> = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-22

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 11:47

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL,	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-12S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 13:05

Misc ID :

Sample #: A75678-7

Category: IN HOUSE

Matrix : Aqueous

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride Bromomethane BDL 2 Chloroethane Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1.1-Dichloroethene BDL 2 Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDL tert-Butanol (TBA) BDL 10

noting rome childriae	222	2	tert-Bucanor (IBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	13	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC was not w/in acceptable limits for MtBE (126%R);

BDI.

Limits 80 - 120%R.

Measure date: 28-JUN-04

Naphthalene

Authorized Signature:

Luca de Barmelle

BDL

1,2,3-Trichlorobenzene

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-12S DUP

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/04

Log in Date : 06/16/2004

Collection Date: 06/15/2004 13:08

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	13	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran (THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC was not w/in acceptable limits for MtBE (126%R);

Limits = 80 - 120%R.

Measure date: 28-JUN-04

Authorized Signature:

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

: 06/16/2004 Log in Date Completion Date: 07/06/04

Collection Date: 06/15/2004 12:05

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

ug/L = micrograms per Liter

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Sample #: A75678-10 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/15/2004 11:05

Log in Date : 06/16/2004 Completion Date: 07/06/04

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

Luca & Barine

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/04

Collection Date: 06/15/2004 10:15

: 06/16/2004

Misc ID

Log in Date

Results RDL Results RDL Analyte Analyte BDL 2 Dichlorodifluoromethane BDI. 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDI. 2 BDL 2 Trichlorofluoromethane Chloroethane BDL 1,1-Dichloroethene BDL. 2 Diethyl ether BDL BDL 10 Carbon disulfide Acetone BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 2 Methyl-t-butyl ether (MTBE) BDL trans-1,2-Dichloroethene BDL. Diisopropyl ether (DIPE) BDL 1,1-Dichloroethane 2 BDT. 2,2-Dichloropropane BDL Ethyl-t-butyl ether (ETBE) 2 BDI. cis-1,2-Dichloroethene BDI. 2 2-Butanone (MEK) 1.0 BDT. Bromochloromethane BDL Chloroform BDL 1,1-Dichloropropene BDL. Tetrahydrofuran(THF) BDL Carbon tetrachloride RDL 2 Benzene BDL 2 1,1,1-Trichloroethane BDL 1.2-Dichloroethane 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL RDL. 2 Dibromomethane BDL 1,2-Dichloropropane BDL BDI. 2 Bromodichloromethane Methyl methacrylate BDL cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene BDL 2 1,3-Dichloropropane BDL BDL 2-Hexanone BDL 1.2-Dibromoethane BDL 2 1,1,1,2-Tetrachloroethane BDL Chlorobenzene BDL BDL 2 m/p-Xylenes Ethvlbenzene BDL o-Xylene BDL 2 Styrene BDL BDL 2 Isopropylbenzene Bromoform BDL BDL 2 1,2,3-Trichloropropane 1,1,2,2-Tetrachloroethane 2 BDL Bromobenzene BDI. n-Propylbenzene BDL o-Chlorotoluene BDL 2 p-Chlorotoluene

EPA Method : SW-8260

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4-Trichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

n-Butylbenzene

Naphthalene

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

2

2

2

2

2

BDL

BDL

BDL

BDL

BDL

BDL

BDL

ug/L = micrograms per Liter

BDL = Below Detection Limit

tert-Butylbenzene sec-Butylbenzene

p-Isopropyltoluene 1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

mg/kg = milligrams per Kilogram

= Greater Than

BDL

BDL

BDL

BDL

BDL

BDL

BDL

2

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= milligrams per Liter ma/L = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

MCL=Maximum Contaminent Level

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

Collectby : S PERKINS/L DESMARAIS Locator : SH-21S

: PLAISTOW

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

: 06/16/2004 Log in Date Completion Date: 07/06/04

Collection Date: 06/14/2004 12:14

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1.1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

Lua de Barmelle

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-21I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Sample #: A75678-13

Category: IN HOUSE

Matrix : Aqueous

: 06/16/2004

Completion Date: 07/06/04

Collection Date: 06/14/2004 11:12

Misc ID

Log in Date

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane 2 BDL Chloroethane BDL Trichlorofluoromethane 2 2 BDL. Diethyl ether BDI. 1.1-Dichloroethene 2 BDL 2 Acetone BDI. 10 Carbon disulfide BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) 1,1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL 2,2-Dichloropropane Ethyl-t-butyl ether (ETBE) BDI. 2 BDL cis-1,2-Dichloroethene BDL 2 2-Butanone (MEK) BDL 1.0 Bromochloromethane BDI. 2 Chloroform BDI. 2 Tetrahydrofuran (THF) 1,1-Dichloropropene BDL 10 BDL 2 Carbon tetrachloride BDL 2 Benzene BDL 2 1,2-Dichloroethane BDL 1,1,1-Trichloroethane BDL 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 1,2-Dichloropropane BDL Dibromomethane BDL Methyl methacrylate BDL Bromodichloromethane BDL cis-1,3-Dichloropropene BDL trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene 1,3-Dichloropropane BDL 2 BDL 2-Hexanone BDL 10 1,2-Dibromoethane BDL Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL Ethylbenzene BDL 2 m/p-Xylenes BDL o-Xylene BDL 2 Styrene BDL Bromoform BDL Isopropylbenzene BDL 1,1,2,2-Tetrachloroethane BDL 1,2,3-Trichloropropane BDL Bromobenzene BDL 2 BDL n-Propylbenzene o-Chlorotoluene BDL 2 BDL p-Chlorotoluene 1,3,5-Trimethylbenzene BDL 2 BDL. tert-Butylbenzene 1,2,4-Trimethylbenzene 2 BDL sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 1,4-Dichlorobenzene BDL 2 BDL 1,2-Dichlorobenzene n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: Linea d. Barmille

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-21D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 10:17

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Greater Than

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-26S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Collection Date: 06/14/2004 14:00

Log in Date : 06/16/2004 Completion Date: 07/06/04

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	2.8	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-28S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 11:20

Misc ID

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL BDL	2
Acetone	BDL	10	Carbon disulfide	BDL BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	2
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL.	10
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: Luca A. Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-29S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 12:40

Misc ID :

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

no de Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level > = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-33S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 10:37

Misc ID :

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL. 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDL. 2 Chloroethane BDL 2 Trichlorofluoromethane BDI. 2 Diethyl ether BDL 1,1-Dichloroethene BDL 2 Acetone BDL Carbon disulfide BDL 2 Methylene chloride BDL 2 tert-Butanol (TBA) BDL trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) BDL 2 1,1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDI. 2 Ethyl-t-butyl ether (ETBE) BDL 2,2-Dichloropropane BDL cis-1,2-Dichloroethene 2-Butanone (MEK) BDL 2 BDI. Bromochloromethane BDL Chloroform RDI. Tetrahydrofuran (THF) 1,1-Dichloropropene BDL BDI. 2 Carbon tetrachloride BDL Benzene BDL 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane BDL 2-Methoxy-2-methylbutane (TAME) BDL Trichloroethene BDL 1,2-Dichloropropane BDL 2 Dibromomethane BDL Methyl methacrylate BDL 2 Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDI. 2 trans-1,3-Dichloropropene BDL 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene BDL 2 1,3-Dichloropropane BDL 2-Hexanone BDL 10 1.2-Dibromoethane BDL Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL Ethylbenzene BDL 2 m/p-Xylenes BDL o-Xylene BDL 2 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDI. 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDI. 2 n-Propylbenzene BDL 2 o-Chlorotoluene BDI. 2 p-Chlorotoluene BDL. 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDI. 2 1,2,4-Trimethylbenzene BDL sec-Butylbenzene BDL 2 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDI. 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

Luca d. Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter
RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level > = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-44S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 14:11

Misc ID

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	4	Chloromethane	Results	RDL
Vinyl chloride	BDL	4	Bromomethane	BDL	4
Chloroethane	6.3	4	Trichlorofluoromethane	BDL	4
Diethyl ether	BDL	4	1,1-Dichloroethene	BDL	4
Acetone	BDL	20	Carbon disulfide	BDL	4
Methylene chloride	BDL	4	tert-Butanol (TBA)	BDL	4
trans-1,2-Dichloroethene	8.2	4	Methyl-t-butyl ether (MTBE)	BDL	20
1,1-Dichloroethane	17	4	Diisopropyl ether (DIPE)	BDL	4
Ethyl-t-butyl ether (ETBE)	BDL	4	2,2-Dichloropropane	BDL	4
cis-1,2-Dichloroethene	316	4	2-Butanone (MEK)	BDL	4
Bromochloromethane	BDL	4	Chloroform	BDL	20
Tetrahydrofuran(THF)	BDL	20	1,1-Dichloropropene	BDL	4
Carbon tetrachloride	BDL	4	Benzene	BDL	4
1,2-Dichloroethane	BDL	4	1,1,1-Trichloroethane	5.4	4
2-Methoxy-2-methylbutane (TAME)	BDL	4	Trichloroethene	26 BDL	4
1,2-Dichloropropane	BDL	4	Dibromomethane	BDL	4
Methyl methacrylate	BDL	4	Bromodichloromethane	BDL	4
cis-1,3-Dichloropropene	BDL	4	trans-1,3-Dichloropropene	BDL	4
4-Methyl-2-pentanone (MIBK)	BDL	20	1,1,2-Trichloroethane	BDL	4
Dibromochloromethane	BDL	4	Toluene	BDL	4
Tetrachloroethene	BDL	4	1,3-Dichloropropane	BDL	4
2-Hexanone	BDL	20	1,2-Dibromoethane	BDL	4
Chlorobenzene	BDL	4	1,1,1,2-Tetrachloroethane	BDL	4
Ethylbenzene	BDL	4	m/p-Xylenes	BDL	4
o-Xylene	15	4	Styrene	BDL	4
Bromoform	BDL	4	Isopropylbenzene	BDL	4
1,1,2,2-Tetrachloroethane	BDL	4	1,2,3-Trichloropropane	BDL	4
Bromobenzene	BDL	4	n-Propylbenzene	BDL	4
o-Chlorotoluene	BDL	4	p-Chlorotoluene	BDL	4
1,3,5-Trimethylbenzene	BDL	4	tert-Butylbenzene	BDL	4
1,2,4-Trimethylbenzene	10	4	sec-Butylbenzene	BDL	4
1,3-Dichlorobenzene	BDL	4	p-Isopropyltoluene	BDL	4
1,4-Dichlorobenzene	BDL	4	1,2-Dichlorobenzene	BDL	4
n-Butylbenzene	BDL	4	1,2-Dibromo-3-chloropropane	_	4
1,2,4-Trichlorobenzene	BDL	4	Hexachlorobutadiene		4
Naphthalene	BDL	4	1,2,3-Trichlorobenzene		4
				וועם	4

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-56S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 09:15

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL.	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL.	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	_
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene		2
			-,-,rrentorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

= Less Than

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

MCL=Maximum Contaminent Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-57S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 10:20

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL.	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL,	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDI.	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
				204	_

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SWWP-4

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:34

: Aqueous

Misc ID

Matrix

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDI. 2 Vinyl chloride BDL 2 Bromomethane BDL 2 Chloroethane BDL 2 Trichlorofluoromethane BDL. 2 Diethyl ether BDL 2 1,1-Dichloroethene \mathtt{BDL} Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDL tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL Methyl-t-butyl ether (MTBE) 2 1.1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL. 2 Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDL 2 cis-1,2-Dichloroethene BDL 2 2-Butanone (MEK) BDI. 10 Bromochloromethane BDI. 2 Chloroform BDL 2 Tetrahydrofuran (THF) BDI. 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride BDL Benzene BDL 2 1,2-Dichloroethane BDL 1,1,1-Trichloroethane BDL. 2 2-Methoxy-2-methylbutane (TAME) BDL Trichloroethene BDL 2 1,2-Dichloropropane BDL 2 Dibromomethane BDL 2 Methyl methacrylate BDL 2 Bromodichloromethane BDI. 2 cis-1,3-Dichloropropene BDI. 2 trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 1.0 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDI. 2 Toluene BDL 2 Tetrachloroethene BDT. 2 1,3-Dichloropropane BDL 2-Hexanone BDL 10 1,2-Dibromoethane BDL Chlorobenzene BDL 1,1,1,2-Tetrachloroethane 2 BDL 2 Ethylbenzene BDL 2 m/p-Xylenes BDL 2 o-Xylene BDL 2 Styrene BDL 2 Bromoform BDI. 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDL 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL 2 n-Propylbenzene BDL 2 o-Chlorotoluene BDI. 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 1,2,4-Trimethylbenzene BDI. 2 sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL 2 n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC for MtBE was not w/in acceptable limits (126%R); QC Limits = 80 - 120R.

Authorized Signature:

ma d. Barulle

Measure date: 28-JUN-04

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75678-23 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/14/2004 13:15

Log in Date : 06/16/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-10

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2		BDL	2
Diethyl ether	BDL	2	Trichlorofluoromethane	BDL	2
Acetone	BDL	10	1,1-Dichloroethene	BDL	2
Methylene chloride	BDL	2	Carbon disulfide	BDL	2
trans-1,2-Dichloroethene	BDL	2	tert-Butanol (TBA)	BDL	10
1,1-Dichloroethane	BDL	2	Methyl-t-butyl ether (MTBE)	2.7	2
Ethyl-t-butyl ether (ETBE)	BDL	2	Diisopropyl ether (DIPE)	BDL	2
cis-1,2-Dichloroethene	BDL	2	2,2-Dichloropropane	BDL	2
Bromochloromethane	BDL	2	2-Butanone (MEK) Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10		BDL	2
Carbon tetrachloride	BDL	2	1,1-Dichloropropene	BDL	2
1,2-Dichloroethane	BDL	2	Benzene	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	1,1,1-Trichloroethane	BDL	2
1,2-Dichloropropane	BDL	2	Trichloroethene	BDL	2
Methyl methacrylate	BDL	2	Dibromomethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	Bromodichloromethane	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	trans-1,3-Dichloropropene	BDL	2
Dibromochloromethane	BDL	2	1,1,2-Trichloroethane Toluene	BDL	2
Tetrachloroethene	BDL	2		BDL	2
2-Hexanone	BDL	10	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	2	1,2-Dibromoethane	BDL	2
Ethylbenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	BDL	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	BDL	2	Hexachlorobutadiene	BDL	2
	221	4	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-12

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:55

Misc ID

Analyte	Results	RDL	:Analyte	Results	DDI
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	RDL 2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL,	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					_

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : WP-14

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 13:55

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran (THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL,	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL.	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
					-

EPA Method : SW-8260

Units: ug/L

Measure date: 29-JUN-04

Authorized Signature:

Luca de Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-15

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:30

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDI.	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	
		-	-, -, o III on to to be it zene	יותמ	2

EPA Method : SW-8260

Units: ug/L

Measure date: 29-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter = Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-17

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 11:55

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL,	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

Luco de Bar

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596

RIFS

PLAISTOW

PAGE: 1

08/05/04

Sales cd	Description			TT
Jaies ca	Description	Quantity	Cost	Amount
	A75678-1			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-10]]
10200	VOA-8260 AQUEOUS A75678-11	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	100 00
1	A75678-12	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75678-13			120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-14 VOA-8260 AQUEOUS	4 000		
10200	A75678-15	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75678-16	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-17			
18260	VOA-8260 AQUEOUS A75678-18	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1 000	100 00	100.00
	A75678-19	1.000	120.00	120.00
18260	RVOA-8260 AQUEOUS	1.000	120.00	120.00
	BA75678-2	_ : : : :	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120,00 Invoice Total:	「 120.00 ¬
			invoice lotal:	

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please	pay	this	amo	unt	:
[\$				_	٦
ĮΨ					

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES**

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE: **HDES**

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

08/05/04

Sales cd	Description	Quantity	Cost	Amount
	A75678-20			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-21			
18260	VOA-8260 AQUEOUS A75678-22	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
}	A75678-23	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-24 VOA-8260 AQUEOUS	1 000	100.00	100.00
10200	A75678-25	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75678-26		, , , ,	
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-27 VOA-8260 AQUEOUS	1.000	120.00	100 00
10200	A75678-3	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10060	A75678-4		[
18260	VOA-8260 AQUEOUS A75678-5	1.000	120.00	120.00
18260	RVOA-8260 AQUEOUS	1.000	120.00	120.00
	BA75678-6	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120,00 Invoice Total:	$\begin{bmatrix} \overline{120.00} \end{bmatrix}$

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

	•	•		
\$ 	_	_		 _
 		$\overline{}$	_	

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596

RIFS

PLAISTOW

PAGE: 3

08/05/04

Sales cd	Description			T
Sales cd	Description	Quantity	Cost	Amount
	A75678-7			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75678-8			-20.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75678-9			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
,				
			İ	
[]				
!				
[
[
	REVIEW THIS INVOICE THOROUGHLY;	MAKE ALL CH	ANGES	
	BEFORE MONTH'S END; PAYMENT IS	AUTOMATIC FR	OM FUND	
				5,240.007
			Invoice Total:	

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

3,240.00

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

4(

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Comments: S. Perkins x 6805 and Leah Desmarais x 0697 Collected By & Phone# Total Mn **Total** Fe Matrix Date/Time Other / Lab ID # Sample Location /ID Sampled Notes (For Lab Use Only) A74939-1 AQ 06/07 11 SH-348 6/2/04 11/10 A74939-2 06/02 12:30 -AQ CH-94I 12/30 AQ SH-24D AQ AQ AQ AQ AQ AQ AQ AQ AQ Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice) Matrix: $A = Air S = Soil AQ = Aqueous \pi Other:$ Section No.: 22.0 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

BEEDE WELLS

Site # 04-000-7307

VC	OCs					
	65 samples					
AE-1	SH-22S					
AE-2	SH-22D					
AE-4	SH-22R					
AE-12	SH-23S					
AE-14	SH-231					
AE-17D	SH-23D					
AE-18S	SH-24S					
AE-18D	SH-241					
AE-21	SH-24D					
AE-22	SH-25S					
	SH-25I					
SH-2S	SH-25D					
SH-21	SH-26S					
SH-2D	SH-27S					
SH-3S	SH-28S					
SH-31	SH-29S					
SH-3D	SH-33S					
SH-4S	SH-38S					
SH-4I	SH-41S					
SH-4D	SH-43S					
SH-12S	SH-44S					
SH-14S	SH-56S					
SH-14I	SH-57S					
SH-14D						
SH-15S						
SH-15I						
SH-15D	WP-4					
SH-19S	WP-10					
SH-19I	WP-12					
SH-19D	WP-14					
SH-20S	WP-15					
SH-201	WP-17					
SH-20D	WP-18					
SH-21S						
SH-211						
SH-21D						
* Natural Attanuation	D					

AE-2 AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D SH-43S	ivati	ural Attenuation 27 samples
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		21 Samples
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-2
AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-17D
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-18S
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		AE-18D
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I		SH-2I
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		
SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-22R SH-23S SH-23I SH-23D SH-24S (SH-24I		
SH-23S SH-23I SH-23D SH-24S SH-24I		
SH-23I SH-23D SH-24S SH-24I		
SH-23D SH-24S SH-24I SH-24D		
SH-24S SH-24I SH-24D		
∜SH-24I SH-24D		
SH-24D		ay: 9.840.
Tuesday of the		Was administration of the second
5H-435		Control of the Contro
		SH-43S

^{*} Natural Attenuation Parameters = Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins Leah Desmarais

FOR LABORATORY USE ONLY

Physical Inspection of the sample	Yes	No	NA	Inspection Community 10
containers and submitted paperwork		110	INA	Inspection Comments and Sample Information
PROJECT (EPA) # current?		 	 	Project (EPA) # 6(607367
Temperature of the sample or temperature			}	
blank	·			Temperature C
Condition of sample(s) acceptable?		1		C
(Check for leakage, breakage, and	/	:	1	
volume) Do VOA's or Radon have air			ĺ	
bubbles?			<u> </u>	
Was the paperwork submitted adequate				
and completely filled out? Hold times				
acceptable?				
Do the paperwork and sample labels				
agree?				
Preservation listed on the sample				
bottle(s)?				
How did the laboratory receive the				Hand delivered or
sample(s)?				Mail
Was the sample(s) received in a cooler?				Number of Coolers
How many coolers were received?			1	Ice
What was used to lower the temp?				Cold Packs(s)
				Nothing
Weether Oliver		IST BEL	OW TO	D BE COMPLETED ONLY IF APPLICABLE
Was the Client contacted by phone?	1			DateTime
Reason	İ	ļ		
				Initials
Additional Comments:	ł			
		İ	,	
		j	ļ	
16				
If present, was the Custody of Seal intact?				
Was the sample(s) subcontracted? List the	1			Contract Lab:
samples which were sent and tests	1		1	
requested:	ŀ	- 1	1	Date/Time
			ļ	
†		Ì		Name of Staff Releasing Sample:

Completed By:	اللا	Date:	(a	, \ 2	104	
	()					

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74939-1 Category: IN HOUSE Locator : SH-24S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous Site : PLAISTOW

Collectby: DESMARAIS/PERKINS Collection Date: 06/02/2004 11:10

Account #: 04-01-04 : 06/03/2004 14:27 Log in Date Project #: 04-0007307 Completion Date: 06/28/2004

Misc ID

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Analyte	Result	ts Units	RDL	EPA Meth	od
IRON	<.05	mg/L	.05	200	
MANGANESE	.775	${ t mg/L}$.01	200	

Authorized Signature: Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74939-2 Category: IN HOUSE

Locator : SH-24I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Log in Date

Collection Date: 06/02/2004 12:30

Collectby: DESMARAIS/PERKINS

: 06/03/2004 14:27

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

MANGANESE

IRON

Analyte Results Units RDL EPA Method < .05 mg/L .05 200 .262 mg/L .01 200

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-24D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB : PLAISTOW

Matrix : Aqueous

Collection Date: 06/02/2004 11:45 Log in Date : 06/03/2004 14:27

Site Collectby: DESMARAIS/PERKINS

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 06/28/2004

Misc ID

RDL EPA Method Analyte Results Units .05 200 mq/L < .05 IRON 200 .01 mg/L .54 MANGANESE

Authorized Signature:

Garry Haworth **Inorganies Supervisor**

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

INVOICE NUMBER: 0026056-IN INVOICE DATE: 06/28/04 DUE DATE: **HDES**

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

07/28/04

	Description	Quantity	Cost	Amount
Sales cd	Description			
1FE	A74939-1 IRON AQUEOUS	1.000	15.00 15.00	15.00 15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	
1FE	A74939-2 IRON AQUEOUS	1.000	15.00	15.00 15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
1FE	A74939-3 IRON AQUEOUS	1.000	15.00	15.00 15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
				!
		•		
1	REVIEW THIS INVOICE THOROUGH BEFORE MONTH'S END; PAYMENT	GHLY; MAKE ALL CH	ANGES OM FUND	
	BEFORE MONTH'S END; PAIMENT	10 110101111110	Invoice Total:	

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026056

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name:	<u>Beede</u> Site/Town: Plai	stow, NH <u>Contact</u> : Leah Desmarais x 0697	, 3C
Comments:	Collected By & Phone#	S. Perkins x 6805 and Leah Desmarais	s x 0697

Sample Location /ID	Date/Time Sampled	# of Container s	Matrix	Total Fe	Total Mn	Other / Notes	Lab ID # (For Lab Use Only)
AE-12	6/3/04 14:00	1	AQ	V	V		A74977-1 06/03 14:00
SH-22S	11:40		AQ		ĺ		A74977-2 06/03 11:40
2H-39D	11:10		AQ				A74977-3 06/03 11:10
SH-20 R	10:15		AQ				A74977-4 06/03 10:15
SH-235	11:38		AQ				A74977-5 06/03 111-11(
SH-23I	14:32		AQ				A74977-6 06/03 14:32
SH-23D	13:22 12	1	AQ	$ \downarrow $			A74977-7 06/03 13:22
			AQ				
			AQ				
			AQ				
			AQ				
			AQ				

	`	
	AQ	IQ I
	AQ	Q
Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ic		
Relinquished By Joan Domandunate and Time 6/3/04 /65	25	S Received By Acled Storage Matrix: A= Air S= Soil AQ= Aqueous π Other:
Relinquished By CCCC Date and Time 04-0110	D	Section No.: 22.0
Page of Data Reviewed By		Date 6 28.01 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

FOR LABORATORY USE ONLY

Physical Inspection of the sample	Yes	No	NA	Inspection Comments and Sample Information	
containers and submitted paperwork		"	1	Inspection Comments and Sample Intompation	
PROJECT (EPA) # current?			1	Project (EPA) # (C) /3/7	
Temperature of the sample or temperature blank				2	
Condition of sample(s) acceptable?		ļ	 	Temperature °C	
(Check for leakage, breakage, and		1	}		
volume) Do VOA's or Radon have air		1	ł		
bubbles?			ŀ		
Was the paperwork submitted adequate			 		
and completely filled out? Hold times			1		
acceptable?			<u> </u>		
Do the paperwork and sample labels			İ		
agree? Preservation listed on the sample		 	ļ. <u></u>		
bottle(s)?			1		
How did the laboratory receive the			!	Hand delivered or	
sample(s)?				Mail Hand delivered or To Colled Hand (Kin.)	
Was the sample(s) received in a cooler?				Number of Coolers	
How many coolers were received?		}	1	Ice	
What was used to lower the temp?				Cold Packs(s)	
			L	Nothing	
W 1 00		LIST BE	LOW T	O BE COMPLETED ONLY IF APPLICABLE	
Was the Client contacted by phone?				DateTime	
Reason				Initials	
Additional Comments:					
If present, was the Custody of Seal intact?					
Was the sample(s) subcontracted? List the				Control	
samples which were sent and tests				Contract Lab:	
requested:				Date/Time	
•		l	ŀ		111/1
	Ì			Name of Staff Releasing Sample:	Markey
	İ				1

Completed By:	Date:_	06.04-04	-
	 Batc		

Sample #: A74977-1

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : AE-12

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous : PLAISTOW

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04 Collection Date: 06/03/2004 14:00

Log in Date : 06/04/2004 10:22 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

Analyte '	Result	s Units	RDL	EPA Meth	ıod
IRON	< .05	mg/L	.05	200	
MANGANESE	.622	mg/L	.01	200	

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

P-A = Present/Absent

WMEB

Matrix : Aqueous

: PLAISTOW

Collectby: S PERKINS/L DESMARAIS Collection Date: 06/03/2004 11:40

Log in Date : 06/04/2004 10:22 Account #: 04-01-04 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

Analyte Results Units RDL EPA Method .05 200 IRON < .05 mg/L

.065 MANGANESE mg/L .01 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

mg/L = milligrams per Liter = Greater Than BDL = Below Detection Limit ug/kg = micrograms per Kilogram = Less Than

pCi/L = pico Curies per Liter mg/kg = milligrams per Kilogram

RDL = Reporting Detection Limit rpt = agency.idxl

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

: PLAISTOW Matrix : Aqueous

Collectby: S PERKINS/L DESMARAIS Collection Date: 06/03/2004 11:10

Account #: 04-01-04 Log in Date : 06/04/2004 10:22 Project #: 04-0007307 Completion Date: 06/28/2004

Misc ID

Analyte	Result	s Units	RDL		i
IRON	<.05	mg/L	.05	200	
MANGANESE	.141	mg/L	.01	200	

Garry Haworth Authorized Signature:

Inorganies Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22R

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW Site

Collection Date: 06/03/2004 10:15

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:22

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Results Units RDL EPA Method

Analyte IRON MANGANESE

3.5 .128

Authorized Signature:

mg/L mg/L

.05 .01 200 200

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

≈ Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-23S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 11:38

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04

Log in Date : 06/04/2004 10:22

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Metho	d
IRON	<.05	mg/L	.05	200	
MANGANESE	<.01	mg/L	.01	200	

Authorized Signature

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Licer

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74977-6

Locator : SH-23I Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 14:32

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:22

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte	Result	s Units	RDL	EPA Metho	od
IRON	.526	mg/L	.05	200	
MANGANESE	.245	mq/L	.01	200	

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74977-7

Locator : SH-23D

Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 13:22 Log in Date : 06/04/2004 10:22

Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte Results RDL EPA Method Units IRON .165 mq/L .05 200 MANGANESE .393 200 mg/L .01

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

Inorganics Supervisor ug/L = micrograms per Lite

= Greater Than

= Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

P-A = Present/Absent

RDL = Reporting Detection Limit

= agency.idxl

INVOICE NUMBER: 0026057-IN INVOICE DATE: 06/28/04 DUE DATE: 07/28/04

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

Sales cd	Description	Quantity	Cost	Amount
	A74977-1			
100	IRON AQUEOUS	1.000	15.00	15.00
1FE	-	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS A74977-2	1.000	13.00	10.00
1.00	1	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	13.00
1	A74977-3	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	15.00
1	A74977-4	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	13.00
1	A74977-5	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	15.00
	A74977-6	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	15.00
	A74977-7	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS			13.00
	REVIEW THIS INVOICE	THOROUGHLY; MAKE ALL	EDOM FIND	
	BEFORE MONTH'S END;	PAYMENT IS AUTOMATIC	LUON LOND	<u> </u>
			Invoice Total:	

Make checks payable to:

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount: 210.00

Treasurer State of NH

Project Number: 04-0007307

Invoice Number: 0026057

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES**

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

rogram/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH	Contact: Leah Desmarais v 0607
3 day to the state of the state	<u>contact</u> : Lean Desmarais x 069/

	Sample	me ed	# of Container s	Matrix	Total Fe	Total Mn	her / otes	Lab ID # (For Lab Use Only)
AE-18S	6/7/04 1	13:55	1	AQ	V \			A75276-1 06/07 13:55
AE-18D		15:05		AQ				A75276-2 06/07 15:05
SH-35	ĺ	09:55		AQ				A75276-3 06/07 09:55
SH-3I		11120	1	AQ				A75276-4 06/07 11:20
SH-30		12:40		AQ				A75276-5 06/07 12:40
SH-158		13.47		AQ				A75276-6
SHBI		11.22		AQ				A75276-7 06/07 11:22
SH-435		15:03		AQ				A75276-8 06/07 15:03
5H-43 Saux		15:08		AQ	\bigvee			A75276-9 06/07 15:08
ľ			•	AQ				
			1	AQ				

Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice)	
Relinquished By JON DOWN Date and Time 47/04 17:00 Received By Jolled Strape Matrix: A=	Air S= Soil AQ= Aqueous π Other:
Relinquished By Storage Date and Time of 9 (04 1140 Received For Laboratory By W.)	Section No.: 22.0
Page of Data Reviewed By C-2810	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

FOR LABORATORY USE ONLY

Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
PROJECT (EPA) # current? Temperature of the sample or temperature blank				Project (EPA) #
Condition of sample(s) acceptable? (Check for leakage, breakage, and volume) Do VOA's or Radon have air bubbles?	U/			Temperature °C
Was the paperwork submitted adequate and completely filled out? Hold times acceptable?	<i></i>			
Do the paperwork and sample labels agree?	٤٠			
Preservation listed on the sample bottle(s)?	V			
How did the laboratory receive the sample(s)?				Hand delivered or Mail
Was the sample(s) received in a cooler? How many coolers were received? What was used to lower the temp?	!			Number of Coolers Ice Cold Packs(s) Nothing
Was the Client contacted by phone?	L	IST BEL	OW TO	BE COMPLETED ONLY IF APPLICABLE
Reason				DateTime
Additional Comments:				Initials
If present, was the Custody of Seal intact?				
Was the sample(s) subcontracted? List the samples which were sent and tests requested:			1.	Contract Lab:
•				Date/Time Name of Staff Releasing Sample:

samples which were sent and tests requested:		Contract Lab: Date/Time Name of Staff Releasing Sample:	
Completed By:いう	Date:_	lat thosy	NA = Not Applicable

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-1 Category: IN HOUSE Locator : AE-18S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 13:55

Collectby: S. PERKINS/L. DESMARIS

Log in Date Completion Date: 06/28/2004

: 06/09/2004 12:38

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Results Units RDL EPA Method IRON 53 mg/L .25 200 MANGANESE 2.04 mg/L .05 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-2 Category: IN HOUSE

Locator : AE-18D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 15:05

Log in Date : 06/09/2004 12:38

Collectby: S. PERKINS/L. DESMARIS Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

	Result	s Units	RDL	EPA Met	nod
IRON	.978	ma/L	05	200	
MANGANESE	37	mg/L	.03	000	
	. 5 /	mg/ Li	.01	200	

Analyta ----

Authorized SignatureCarry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

RDL = Reporting Detection Limit

= Less Than

ug/L = micrograms per Liter

pCi/L = pico Curies per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-3 Category: IN HOUSE Locator : SH-3S
Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site : PLAISTOW
06/07/2004 09:55 Collectby: S PERKI

Collection Date: 06/07/2004 09:55 Log in Date : 06/09/2004 12:38 Collectby: S. PERKINS/L. DESMARIS Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID :

Results Units RDL EPA Method

 IRON
 <.05</th>
 mg/L
 .05
 200

 MANGANESE
 .01
 mg/L
 .01
 200

Garry Haworth

Authorized Signature: Inorganics Supervisor

mg/L = milligrams per Liter

ug/L = micrograms per Liter

> = Greater Than

< = Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter
RDL = Reporting Detection Limit

mg/kg = milligrams per Kilogram

P-A = Present/Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-4 Category: IN HOUSE Locator : SH-3I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 11:20 Log in Date : 06/09/2004 12:38

Collectby: S. PERKINS/L. DESMARIS

Completion Date: 06/28/2004

Account #: 04-01-04

Project #: 04-0007307

Misc ID

MANGANESE

IRON

Results Units RDL EPA Method .109 mg/L .05 200 .054 mg/L .01 200

Garry Haworth

Authorized Signature: Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-5 Category: IN HOUSE

Locator : SH-3D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site : PLAISTOW

Collection Date: 06/07/2004 12:40

Collectby: S. PERKINS/L. DESMARIS

Log in Date : 06/09/2004 12:38

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte Results Units RDL EPA Method 2.71 mq/L .05 200 .209 .01 mg/L 200

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

ug/L = microgramorganics Supervisor

≃ Greater Than

P-A = Present/Absent

= Less Than

IRON

MANGANESE

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-15S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

Collection Date: 06/07/2004 13:47

: PLAISTOW

Collectby: S. PERKINS/L. DESMARIS

Completion Date: 06/28/2004

Log in Date : 06/09/2004 12:38

Account #: 04-01-04

Project #: 04-0007307

Misc ID

Analyte IRON MANGANESE	RASHITA	Units mg/L mg/L	RDL . 05 . 02	EPA Meth 200 200	ođ
------------------------------	---------	-----------------------	----------------------------	-------------------------------	----

Authorized Signature Gamy Haworth

Inorganics Supervisor

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-7 Category: IN HOUSE Locator : SH-15I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 11:22 Collectby: S. PERKINS/L. DESMARIS

Log in Date : 06/09/2004 12:38 Account #: 04-01-04 Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Meth	od
IRON	<.05	mg/L	.05	200	
MANGANESE	<.01	mg/L	.01	200	

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

ug/L = micrograms per Liter

= Greater Than

= Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit mg/kg = milligrams per Kilogram

P-A = Present/Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-8 Category: IN HOUSE Locator : SH-43S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 15:03 : 06/09/2004 12:38

Collectby: S. PERKINS/L. DESMARIS

Log in Date

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte	Results	units	RDL	EPA Meth	od
IRON	20.9	mg/L	.05	200	
MANGANESE	1.18	mg/L	.01	200	

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

ug/L = micrograms per Liter

= Greater Than

= Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

P-A = Present/Absent

RDL = Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-9 Category: IN HOUSE Locator : SH-43S DUP
Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW Site

Collection Date: 06/07/2004 15:08

Results Units

mg/L

mg/L

Collectby: S. PERKINS/L. DESMARIS

200

200

Log in Date

: 06/09/2004 12:38

Account #: 04-01-04

Completion Date: 06/28/2004

Analyte

MANGANESE

Project #: 04-0007307

.05

.01

Misc ID

IRON

Authorized Signature:

20.8

1.15

Garry Haworth

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

RDL EPA Method

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026059-IN INVOICE DATE: 06/28/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

07/28/04

Sales cd	Description	Quantity	Cost	Amount
		Guaritity		Amount
1 00	A75276-1			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
1	A75276-2		ļ	
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-3			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-4			1
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
_	A75276-5			10.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-6			19.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-7		10.00	13.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	RA75276-8	= : : : 3	10.00	13.00
1FE	BIRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000		-15.00 7
		1.000	15.00 Invoice Total:	

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

F	Ple	ase	рa	y th	is a	amo	unt	:
S			_	_			_	٦
Ψ								

Project Number: 04-0007307

Invoice Number: 0026059

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026059-IN INVOICE DATE: 06/28/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

07/28/04

Sales cd	Description	Quantity	Cost	Amount
1FE 1MN	A75276-9 IRON AQUEOUS MANGANESE AQUEOUS	1.000 1.000	15.00 15.00	15.00 15.00
	REVIEW THIS INVOICE THOROUGH BEFORE MONTH'S END; PAYMENT	ILY; MAKE ALL CHA IS AUTOMATIC FRO	NGES M FUND	┌ <u></u> 270.00 ┐
			Invoice Total:	

Make checks payable to: Treasurer State of NH

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026059

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments: _____ Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697

Sample Location /ID	Date/Time Sampled	# of Container s	Matrix	Total Fe	Total Mn	Other / Notes	Lab ID # (For Lab Use Only)
HE-14	6/8/04 14:00	1	AQ	V	V		A75273-1 06/08 14:00
AE-14 dup	14,05		AQ				A75273-2 06/08 14:05
AE-17 D	14.00		AQ				A75273-3 06/08 14:00
5H-2S	11:19		AQ				A75273-4 06/08 11:19
SH-2I	13:38		AQ				A75273-5 06/08 12:28
SH-2D	10:18		AQ				A75273-6 06/08 10:18
SH-49	09:45		AQ				A75273-7 06/08 09:45
SH-4I	13:00		AQ				A75273-8
SH-40	13,00	1	AQ				A75273-9 06/08 13:00
	•		AQ				
			AQ				
			AQ				

Preservation:	Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice)	
Relinquished By		Soil AQ= Aqueous π Other:
Relinquished By	Date and Time Colog Con Deboratory By Declived For Deboratory By	Section No.: 22.0 Revision No.: 1 (HWRB)
Page	Data Reviewed By Date 6.28.0	Date: 1-17-01 Page 1 of 1

FOR LABORATORY USE ONLY

Dhariant		•	<u> </u>	OR LABORATORY USE ONLY
Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
PROJECT (EPA) # current?	 	 	<u> </u>	
Temperature of the sample or temperature blank				Project (EPA) #
Condition of sample(s) acceptable?	 			Temperature °C
volume) Do VOA's or Radon have air bubbles?				
Was the paperwork submitted adequate and completely filled out? Hold times acceptable?	V			Jane 12:28 Postile
Do the paperwork and sample labels agree?	~			17.26
Preservation listed on the sample bottle(s)?				
How did the laboratory receive the sample(s)?				Hand delivered or
Was the sample(s) received in a cooler? How many coolers were received? What was used to lower the temp?				Mail Number of CoolersIce
				Cold Packs(s) Nothing
Was the Client contacted by phone?	<u>L</u>	JIST BEL	OW TO	O BE COMPLETED ONLY IF APPLICABLE
phone:		i		DateTime
Reason		i		
Additional Comments:				Initials
present, was the Custody of Seal intact?				
Vas the sample(s) subcontracted? List the amples which were sent and tests			_	Contract Lab:
equested:				Date/Time
				Name of Staff Releasing Sample:
ompleted By:		Date:		e Glory
		· · · · · · · · · · · · · · · · · · ·		NA NA NA

NA = Not Applicable

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-1 Category: IN HOUSE Locator : AE-14 Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 14:00

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:26 Completion Date: 06/28/2004

Account #: 04-01-04 Project #: 04-0007307

Misc ID

Analyte Results Units RDL EPA Method IRON < .05 mg/L .05 200 MANGANESE < .01 mg/L .01 200

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter = Less Than

ug/L = micrograms per Liter

= Greater Than

P-A = Present/Absent

BDL = Below Detection Limit mg/kg = milligrams per Kilogram ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-2 Category: IN HOUSE

Locator : AE-14 DUP Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 14:05 Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:26 Account #: 04-01-04 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Results Units RDL EPA Method IRON < .05 mg/L .05 200 **MANGANESE** < .01 mg/L .01 200

Authorized Signature: Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl = Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-3 Category: IN HOUSE Locator : AE-17 D
Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Collection Date: 06/08/2004 14:00

: PLAISTOW

Log in Date : 06/09/2004 12:26

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Metho	d
IRON	.36	mg/L	.05	200	
MANGANESE	1.09	mg/L	.01	200	

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms ranics Supervisor

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-4 Category: IN HOUSE

Locator : SH-2S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 11:19

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:26

Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

IRON .23 mg/L .05 200 MANGANESE .01 mg/L .01 200
--

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

ug/L = micrograms per Liter

pCi/L = pico Curies per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

ug/kg = micrograms per Kilogram

= Greater Than

RDL = Reporting Detection Limit

rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-5 Category: IN HOUSE

Locator : SH-2I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 12:28

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:26

Completion Date: 06/28/2004

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Account #: 04-01-04

Misc ID

Project #: 04-0007307

IRON

Results Units RDL EPA Method 6.06 MANGANESE 1.15

mg/L mq/L

.05 .01

200 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-6 Category: IN HOUSE

Locator : SH-2D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 10:18

Log in Date

Collectby: S PERKINS/L DESMARAIS

Completion Date: 06/28/2004

: 06/09/2004 12:26

Account #: 04-01-04

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Project #: 04-0007307

Misc ID

	Results	Units	RDL	EPA Method	
IRON	.063	mg/L	.05	200	
MANGANESE	.07	${\sf mg/L}$.01	200	

Authorized Signature:

Garry Haworth Inorganics Supervisor

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-7 Category: IN HOUSE

Locator : SH-4S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Collection Date: 06/08/2004 09:45

: PLAISTOW

Log in Date : 06/09/2004 12:26

Collectby: S PERKINS/L DESMARAIS

Completion Date: 06/28/2004

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyce	Results	Units	RDL	EPA Meth		ren nervan renamen de
IRON	161	mq/L	ΛF	200	10tt	
MANGANESE	010	J,,_	.05	200		
MANUSE	.019	${\sf mg/L}$.01	200		
		-				

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-4I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW

Collectby: S PERKINS/L DESMARAIS

Completion Date: 06/28/2004

Collection Date: 06/08/2004 12:00 Log in Date : 06/09/2004 12:26

Account #: 04-01-04

Project #: 04-0007307

Misc ID

Analyte	Result	s Units	RDL	EPA Meth	od
IRON	2.5	mg/L	.05	200	
MANGANESE	.02	mg/L	.01	200	

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms or anics Supervisor

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75273-9 Category: IN HOUSE

Locator : SH-4D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Collection Date: 06/08/2004 13:00

: PLAISTOW

Log in Date : 06/09/2004 12:26

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

MANGANESE

IRON

Project #: 04-0007307

Analyte

Results Units EPA Method RDL .308 mg/L .05 200 .275 mq/L .01 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

ug/L = micrograms per Liter

pCi/L = pico Curies per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

ug/kg = micrograms per Kilogram

= Greater Than

RDL = Reporting Detection Limit

P-A = Present/Absent

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026058-IN INVOICE DATE: 06/28/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

07/28/04

Sales cd	Description	Quantity	Cost	Amount
	Dodonphon	Quantity	Cost	Amount
	A75273-1			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-2			10.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-3			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-4			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-5			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-6			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75273-7			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	. MANGANESE AQUEOUS	1.000	15.00	15.00
	RA75273-8		ĺ	
1FE	BIRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00 Invoice Total:	15.00
			invoice lotal:	

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

\$

Project Number: 04-0007307

Invoice Number: 0026058

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026058-IN INVOICE DATE: 06/28/04 DUE DATE: DES

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

07/28/04

Sales cd	Description			
Sales co	Description	Quantity	/ Cost	Amount
1FE 1MN	A75273-9 IRON AQUEOUS MANGANESE AQUEOUS	1.000		15.00
	REVIEW THIS INVOICE THO BEFORE MONTH'S END; PAY	DROUGHLY; MAKE ALL YMENT IS AUTOMATIC	CHANGES FROM FUND	
			Invoice Total:	$\begin{bmatrix} 270.00 \end{bmatrix}$

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

270.007

Project Number: 04-0007307

Invoice Number: 0026058

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

rogram/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 S. Perkins x 6805 and Leah Desmarais x 0697 Collected By & Phone# omments:_____ Total Mn **Total Fe** Matrix Lab ID# Other / Date/Time (For Lab Use Only) Sample Location /ID Notes Sampled A75582-1 AQ 10/15/04 06/15 11:27 ____ AQ AQ AQ AQ AQ AQ AQ AO AO AQ AQ Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice) Preservation: Relinquished By Oland com WDate and Time 6/15/04 16:30 Received By Loland bray Matrix: A= Air S= Soil AQ= Aqueous π Other: Local String Date and Time Gliblot 7:39 Received for Sporatory By Section No.: 22.0 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1 Data Reviewed By Garry Haworth

Inorganics Supervisor

FOR LABORATORY USE ONLY

Physical Inspection of the sample	Yes	No	NA	Inspection Comments and Sample Information
containers and submitted paperwork			<u></u>	
PROJECT (EPA) # current?				Project (EPA) # 64-00 0 7307
Temperature of the sample or temperature]			
blank		<u> </u>		Temperature \checkmark °C
Condition of sample(s) acceptable?				
(Check for leakage, breakage, and			ŀ	
volume) Do VOA's or Radon have air				
bubbles?				
Was the paperwork submitted adequate				
and completely filled out? Hold times			1	
acceptable?		1		
Do the paperwork and sample labels	٠/٠			
agree?			1	
Preservation listed on the sample			1	
bottle(s)?			1	
How did the laboratory receive the				✓ Hand delivered or
sample(s)?				Mail
Was the sample(s) received in a cooler?			Ī .	Number of Coolers
How many coolers were received?				Number of Coolers In Sing Over Might Cold Packs(s) Lookel String
What was used to lower the temp?				Cold Packs(s)
		Ì		Nothing
		LIST BE	LOW T	O BE COMPLETED ONLY IF APPLICABLE
Was the Client contacted by phone?			T	Date _ Time
Reason	1			Initials
Additional Comments:				
If present, was the Custody of Seal intact?		1	1	
Was the sample(s) subcontracted? List the				Contract Lab:
samples which were sent and tests			1	
requested:		1		Date/Time
			1	Name of Staff Releasing Sample:
L		J	1	I

Completed By:	Date: 6/16/04	NA = Not Applicable
---------------	---------------	---------------------

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75582-1

Category: IN HOUSE

Locator : AE-2

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Collection Date: 06/15/2004 11:27

: PLAISTOW Collectby: S. PERKINS/ L.DESMARIS

: 06/16/2004 07:37 Log in Date

Account #: 04-01-04

Completion Date: 06/29/2004

Misc ID

Project #: 04-0007307

Analyte Results Units RDL EPA Method 200 6.48 .05 mq/LIRON mg/L .02 200 2.51 MANGANESE

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026071-IN INVOICE DATE: 06/29/04 DUE DATE: HDES

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

07/29/04

Sales cd	Description	Quantity	Cost	Amount
1FE 1MN	A75582-1 IRON AQUEOUS MANGANESE AQUEOUS	1.000	15.00 15.00	15.00 15.00
	REVIEW THIS INVOICE THOROUGHI BEFORE MONTH'S END; PAYMENT I			
			Invoice Total:	[] []

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please	pay this amount:
\$	

Project Number: 04-0007307

Invoice Number: 0026071

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Sample Location /ID		/Time npled	# of Container	Matrix	Chloride	Sulfate	Nitrate	Alkalinity	TKN		Other / Notes	Lab ID # (For Lab Use Only)
SHIZYS	6/2/04	11:10	2	AQ	V		\checkmark					A74872-1 06/02 11:10
SH-34I		12130		AQ								A74872-2 06/02 12:30
SH-24D		11:45	1	AQ	J	J	1					A74872-3 06/02 11:45
				AQ								
				AQ								
				AQ								
				AQ								
				AQ								
				AQ								
				AQ								
				AQ								
				AQ								
ntion:	703). TKN (H2S	SO4.Ice) oth	ers (Ice	.,				l		11		
shed By Shain fuhin	•				n	. ,	n		, ,		Matrix: A=	

BEEDE WELLS Site # 04-000-7307

	Site # 04
	VOCs
6	5 samples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14	SH-231
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-241
AE-21	SH-24D
AE-22	SH-25S
	SH-25I
SH-2S	SH-25D
SH-21	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-31	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-4I	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S	SH-56S
SH-14I	SH-57S
SH-14D	
SH-15S	
SH-15I	
SH-15D	WP-4
SH-19S	WP-10
SH-19I	WP-12
SH-19D	WP-14
SH-20S	WP-15
SH-20I	WP-17
SH-20D	WP-18
SH-21S	
SH-211	
SH-21D	
Natural Attonuation	Description

Natural Attenuation *	
27 samples	•
	-
AE-2	-
AE-12	-
AE-14	•
AE-17D	
AE-18S	-
AE-18D	-
	-
SH-2S	-
SH-2I	
SH-2D	-
SH-3S	-
SH-3I	-
SH-3D	-
SH-4S	-
SH-41	-
SH-4D	-
SH-15S	
SH-15I	1
SH-22S	1
SH-22D	1
SH-22R	
SH-23S	
SH-231	
SH-23D	
SH-24S	
\SH-24	
SH-24D	
SH-43S	

* Natural Attenuation Parameters = Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins Leah Desmarais

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74872-1 Category: IN HOUSE

Locator : SH-24S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous Collection Date: 06/02/2004 11:10

: PLAISTOW

Collectby: S PERKINS & L DESMARAIS

351.2

300.0

Log in Date : 06/03/2004 06:21 Completion Date: 07/07/2004

Account #: 04-01-04

Project #: 04-0007307

.25

1

Misc ID

Analyte Results Units RDL EPA Method ALKALINITY 396 mg/L 310.1 CHLORIDE 6 mg/L 325.2 NITRATE-N <0.05 mg/L .05 353.2 NITROGEN, TKN

< .25

76

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

SULFATE

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

mg/L

mg/L

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74872-2 Category: IN HOUSE

Locator : SH-24I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/02/2004 12:30

Collectby: S PERKINS & L DESMARAIS Account #: 04-01-04

Log in Date : 06/03/2004 06:21 Completion Date: 07/07/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	29	mg/L		310.1
CHLORIDE	31	mg/L	3	325.2
NITRATE-N	20.9	mg/L	. 2	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	14	mg/L	1	300.0

Analyst Comments: SO4 resulte may be elevated due to coeluting analyte spike rec 90%

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74872-3 Category: IN HOUSE

Locator : SH-24D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/02/2004 11:45 Log in Date

: 06/03/2004 06:21

Collectby: S PERKINS & L DESMARAIS

Completion Date: 07/07/2004

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Method
ALKALINITY CHLORIDE	<.1 3100	mg/L	200	310.1
NITRATE-N	1.77	mg/L	300 .05	325.2 353.2
NITROGEN, TKN SULFATE	.6	mg/L	.25	351.2
	14	mg/L	1	300.0

Authorized Signature:

Garry Haworth inorganics Supervisor

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

NHDES

INVOICE NUMBER:0026111-IN INVOICE DATE: 07/07/04 DUE DATE: 08/06/04

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

Sales cd	Description	Oupptitu		TT
	·	Quantity	Cost	Amount
1CL 1SO4 1NO3 1ALKAL 1TKN 1CL 1SO4 1NO3 1ALKAL 1TKN	A74872-1 CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS A74872-2 CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS NITROGEN, TKN AQUEOUS A74872-3	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	10.00 25.00 10.00 17.00 25.00 10.00 25.00 17.00 25.00	10.00 25.00 10.00 17.00 25.00 10.00 25.00 17.00 25.00
1CL 1SO4 1NO3 1ALKAL 1TKN	CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS	1.000 1.000 1.000 1.000	10.00 25.00 10.00 17.00 25.00	10.00 25.00 10.00 17.00 25.00
	REVIEW THIS INVOICE THOROUGHLY; BEFORE MONTH'S END; PAYMENT IS	MAKE ALL CHA AUTOMATIC FRO	NGES M FUND Invoice Total:	[<u>261.00</u>]

Make checks payable to:
Treasurer State of NH

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

\$ 261.00

Project Number: 04-0007307

Invoice Number: 0026111

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Sample Location /ID	Date/Time Sampled	# of Container	Matrix	Chloride	Sulfate	Nitrate	Alkalinity	TKN		Other / Notes	Lab ID # (For Lab Use Only)
AE-12	6/3/04 14:00	2	AQ	V	V	V	/	V			A74973-1 06/03 14:00
SH-225	11:40	11	AQ					11			A74973-2
SH-22D	11:10		AQ								A74973-3
SH ZaR	1015		AQ								A74973-4 ^{'-} 06/03 10:15
SH-235	11:38		AQ				$ \top $				A74973-5
SH. 23 I	14:32		AQ		\prod		1				04/03 11:38_ A74973-6
SH-23D	13.22		AQ	1			1				06/07 A74973-7 06/03 13:22
			AQ		13						00/03 1012
			AQ								
			AQ								
			AQ			+					
			AQ								
ation: Fe/Mn (HNO	3), TKN (H2SO4,Ice) oth	ners (Ice	 e)		·						
shed By Leah Demayan				Rec	eived	Bvř	fi.V	and .	Strag		
shed By CO Clock Store)			c	4		1.)]	Pry By	Matrix; A=	Air S= Soil AQ= Aqueous π Otl

BEEDE WELLS Site # 04-000-7307

VOCa 3116 # 04-						
VOCs						
65 samples						
AE-1	SH-22S					
AE-1						
AE-2	SH-22D					
	SH-22R					
AE-12	SH-23S					
AE-14	SH-231					
AE-17D	SH-23D					
AE-18S	SH-24S					
AE-18D	SH-241					
AE-21	SH-24D					
AE-22	SH-25S					
<u> </u>	SH-25I					
SH-2S	SH-25D					
SH-21	SH-26S					
SH-2D	SH-27S					
SH-3S	SH-28S					
SH-31	SH-29S					
SH-3D	SH-33S					
SH-4S	SH-38S					
SH-41	SH-41S					
SH-4D	SH-43S					
SH-12S	SH-44S					
SH-14S	SH-56S					
SH-14I	SH-57S					
SH-14D						
SH-15S						
SH-15I						
SH-15D	WP-4					
SH-19S	WP-10					
SH-19I	WP-12					
SH-19D	WP-14					
SH-20S	WP-15					
SH-20I	WP-17					
SH-20D	WP-18					
SH-21S	- Marie					
SH-21I						
SH-21D						

ivatul	al Attenuation 27 samples
	27 Sumples
	AE-2
	AE-12
	AE-14
241.1	AE-17D
	AE-18S
	AE-18D
	ALL AND ALL AN
	SH-2S
	SH-21
	SH-2D
	SH-3S
	SH-31
	SH-3D
	SH-4S
	SH-41
	SH-4D
	SH-15S
	SH-15I
	SH-22S
	SH-22D
	SH-22R
	SH-23S
	SH-23I
	SH-23D
	SH-24S SH-24I
	SH-24D
	SH-24D SH-43S
	SF1-433
·	

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity * Natural Attenuation Parameters =

Samplers: Sharon G. Perkins

Leah Desmarais

FOR LABORATORY USE ONLY

DL			<u> </u>	CON LABORATORY LISE ONLY
Physical Inspection of the sample	Yes	No	NA	Inspection Comment 18
containers and submitted paperwork PROJECT (EPA) # current?			1	Inspection Comments and Sample Information
Temperature of the sample or temperature				Project (EDA) # FX/
blank blank	10		}	Project (EPA) # 01 - 660 73 07
Condition of sample(s) acceptable?	10		}	Temperature ->
(Check for leakage, breakage, and				1 emperature °C
volume) Do VOA's or Radon have air	10		ĺ	
bubbles?	10		1	\downarrow
Was the paperwork submitted adequate	ļ		1	
and completely filled out? Hold times				
acceptable?			1	
Do the paperwork and sample labels			1	
agree?				
Preservation listed on the sample			1	
bottle(s)?		-		
How did the laboratory receive the			'	
sample(s)?				Hand delivered or
Was the sample(a) manifest				Mail
Was the sample(s) received in a cooler? How many coolers were received?			· -	Number of Coolers_
What was used to lawrett	j	See) D	Ice
What was used to lower the temp?				Cold Packs(s)
				Nothing.
Was the Client contact II		LIST BEI	LOW T	O BE COMPLETED ONLY IF APPLICABLE
Was the Client contacted by phone?				DateTime
Reason	}			1 mie
Additional Comments:		}		Initials
Additional Comments:			· -	THE CONTRACTOR OF THE CONTRACT
	1	ł	ł	
1	- 1		- 1	
	ļ	1	i	
f proceed were all G	_	1.	ı	
f present, was the Custody of Seal intact?				
was the sample(s) subcontracted? List the				Contract Lab:
amples which were sent and tests				Contract F80:
equested:	1		- 1	Date/Time
		- 1	- 1	Date/ I lille
		- 1	∦,	Name of Carter I
	ĺ		- 1	Name of Staff Releasing Sample:
				Name of Staff Releasing Sample: Alagoria 13-14:00 Alagoria 13-14:00 Alagoria 13-14:00
Completed By:	г	Date:	ί.	(b)
	^L	/atc:	\mathcal{Q}	
				NA = Not Applicable

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-1 Category: IN HOUSE

Locator : AE-12 Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 14:00

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:01

Account #: 04-01-04

Completion Date: 07/07/2004

Misc ID

Project #: 04-0007307

Analyte ALKALINITY CHLORIDE NITRATE-N NITROGEN TKN	19.8 8 .58	mg/L mg/L mg/L	RDL 3 .05	EPA Method 310.1 325.2 353.2
NITRATE-N	.58	mg/L	.05	353.2
NITROGEN, TKN	.5	mg/L	.25	351.2
SULFATE	5	mg/L	1	300.0

Garry Haworth

Authorized Signature: _

Inorganics Supervisor

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-2 Category: IN HOUSE

Locator : SH-22S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 11:40 Log in Date : 06/04/2004 10:01 Completion Date: 07/07/2004

Collectby: S PERKINS/L DESMARAIS

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Metho	od
ALKALINITY	11.2	mg/L		310.1	50 570 5 0000 4 645 540
CHLORIDE	80	mg/L	3	325.2	
NITRATE-N	.18	mg/L	.05	353.2	
NITROGEN, TKN	<.25	mg/L	.25	351.2	
SULFATE	7	mg/L	1	300.0	•

Authorized Signature:

Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

mg/L = milligrams per Liter = Less Than BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-3 Category: IN HOUSE

Locator : SH-22D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 11:10 Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04

Log in Date : 06/04/2004 10:01 Completion Date: 07/07/2004

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Project #: 04-0007307

Misc ID

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	33	mg/L		310.1
CHLORIDE	115	mg/L	3	325.2
NITRATE-N	.6	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	9	mg/L	1	300.0

Authorized Signature:

Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-4 Category: IN HOUSE

Locator : SH-22R Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 10:15

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:01 Completion Date: 07/07/2004

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	41.2	mq/L		310.1
CHLORIDE	167	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	. 3	mg/L	.25	351.2
SULFATE	17	mg/L	1	300.0

Authorized Signature:

Garry Haworth **Inorganics Supervisor**

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-5 Category: IN HOUSE

Locator : SH-23S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Log in Date

Collection Date: 06/03/2004 11:38 : 06/04/2004 10:01

Collectby: S PERKINS/L DESMARAIS

Completion Date: 07/07/2004

Account #: 04-01-04

Project #: 04-0007307

Misc ID

Analyte	Results		RDL	EPA Method
ALKALINITY	51.4	mq/L		310.1
CHLORIDE	75	mq/L	3	325.2
NITRATE-N	2.23	mq/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	52	mq/L	1	300.0

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-6 Category: IN HOUSE

Locator : SH-23I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 14:32 Log in Date : 06/04/2004 10:01 Completion Date: 07/07/2004

Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte ALKALINITY CHLORIDE NITRATE-N NITROGEN, TKN SULFATE	58.8 160 1.2	mg/L mg/L mg/L mg/L		EPA Method 310.1 325.2 353.2 351.2
SULFATE	14	mg/L	1	300.0

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74973-7 Category: IN HOUSE

Locator : SH-23D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 13:22

Collectby: S PERKINS/L DESMARAIS

Log in Date Completion Date: 07/07/2004

: 06/04/2004 10:01

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL 1	EPA Method
ALKALINITY	34.5	mg/L		310.1
CHLORIDE	19	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	21	mg/L	1	300.0

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

INVOICE NUMBER: 0026114-IN INVOICE DATE: DUE DATE:

INVOICE

BEEDE WASTE OIL- 2596

RICHARD PEASE

RIFS PLAISTOW

Attn:

PAGE: 1

07/07/04

08/06/04

Sales cd	Description	Quantity	Coat	A
		Quantity	Cost	Amount
1CL	A74973-1			
1SO4	CHLORIDE AQUEOUS	1.000	10.00	10.00
1804 1NO3	SULFATE AQUEOUS	1.000	25.00	25.00
1ALKAI	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1TKN	ALKALINITY AQUEOUS	1.000	17.00	17.00
111111	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
1CL	A74973-2			
1SO4	CHLORIDE AQUEOUS	1.000	10.00	10.00
1NO3	SULFATE AQUEOUS	1.000	25.00	25.00
1ALKAI	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1TKN	ALKALINITY AQUEOUS	1.000	17.00	17.00
1 11111	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
1CL	A74973-3			
1504	CHLORIDE AQUEOUS	1.000	10.00	10.00
1NO3	SULFATE AQUEOUS	1.000	25.00	25.00
1ALKAT	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1TKN	ALKALINITY AQUEOUS	1.000	17.00	17.00
11111	NITROGEN, TKN AQUEOUS A74973-4	1.000	25.00	25.00
1CL				
1504	CHLORIDE AQUEOUS	1.000	10.00	10.00
1NO3	SULFATE AQUEOUS	1.000	25.00	25.00
1ALKAI	RNITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1TKN	BALKALINITY AQUEOUS	1.000	17.00	17.00
11111	NITROGEN, TKN AQUEOUS	1.000	25.00	r 25.00 ¬
			Invoice Total:	L

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026114

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES**

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

INVOICE NUMBER: 0026114-IN INVOICE DATE: 07/07/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

08/06/04

Sales cd	Description			
Sales cu	Description	Quantity	Cost	Amount
1CL 1SO4 1NO3 1ALKAL 1TKN	A74973-5 CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS A74973-6 CHLORIDE AQUEOUS	1.000 1.000 1.000 1.000 1.000	10.00 25.00 10.00 17.00 25.00	10.00 25.00 10.00 17.00 25.00
1SO4 1NO3 1ALKAL 1TKN	SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS A74973-7	1.000	25.00 10.00 17.00 25.00	25.00 10.00 17.00 25.00
1CL 1SO4 1NO3 1ALKAL 1TKN	CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS	1.000 1.000 1.000 1.000	10.00 25.00 10.00 17.00 25.00	10.00 25.00 10.00 17.00 25.00
	REVIEW THIS INVOICE THOROUGHLY; BEFORE MONTH'S END; PAYMENT IS	MAKE ALL CHA AUTOMATIC FRO	ANGES DM FUND Invoice Total:	[609.00]

Make checks payable to:

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount: -609.00 7

Treasurer State of NH

Project Number: 04-0007307

Invoice Number: 0026114

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Comments:____48 hour holding time!____ Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697

Sample Location /ID		Date/Time Sampled	# of Container	s Matrix	Chloride	Sulfate	Nitrate	Alkalinity	TKN	Other / Notes	Lab ID # (For Lab Use Only)
AE-185	6/7	104 13:55	2	AQ	V	V	V	V	V		A75120-1 06/07 13:55
AE-181)		15:05		AQ		}					A75120-2
SH-35		09:55		AQ							A75120-3
SH-3I		11:20		AQ							A75120-4 06/07 11:20
SH-3D		12:40		AQ							A75120-5
SH-158		13.47		AQ							04/07 12:40 A75120-6
SH-15I.		11/22		AQ			1				06/07 13:47 A75120-7
4 5H-15D		79:49		AQ			-				06/07 11:22
54-435		<u> </u>		AQ							A75120-8
SH-43 Sdup		15.08	V	AQ	7		./				06/07 15:03 A75120-9
				AQ	**	•	v_	_ <u>~</u> _			06/07 15:08
				AQ							

	į.
Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice)	
Relinquished By Stand Strage Matrix: A= Air S= Soi	AQ= Aqueous π Other:
Relinquished By OCI (C) Strong Date and Time (S) OH 10:10 Received For Laboratory By	
Page of Data Reviewed By Garry Haworth Date	Section No.: 22.0 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

BEEDE WELLS Site # 04-000-7307

VC	Site # 04-					
VOCs 65 samples						
00 30	in pico					
AE-1	SH-22S					
AE-2	SH-22D					
AE-4	SH-22R					
AE-12	SH-23S					
AE-14	SH-23I					
AE-17D	SH-23D					
#5/185 W	SH-24S					
/ A = 1802	SH-241					
AE-21	SH-24D					
AE-22	SH-25S					
	SH-25I					
SH-2S	SH-25D					
SH-2I	SH-26S					
SH-2D	SH-27S					
SH-3S	SH-28S					
SH-3I	SH-29S					
SH-3D	SH-33S					
SH-4S	SH-38S					
SH-41	SH-41S					
SH-4D	SH-43S					
SH-12S	SH-44S					
SH-14S	SH-56S					
SH-14I	SH-57S					
SH-14D						
SH-15S						
SH-15I						
SH-15D	WP-4					
SH-19S	WP-10					
SH-19I	WP-12					
SH-19D	WP-14					
SH-20S	WP-15					
SH-201	WP-17					
SH-20D	WP-18					
SH-21S						
SH-211						
SH-21D						

Natural Attenuation *
27 samples
AE-2
AE-12
AE-14
AE-17D
AE-18S
AE-18D
SH-2S
SH-21
SH-2D
SH-3S
SH-31
SH-3D
SH-4S
SH-41
SH-4D
SH-15S
SH-15I
SH-22S
SH-22D
SH-22R
SH-23S
SH-23I
SH-23D
SH-24S
SH-241
SH-24D
SH-435 1140
,

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

FOR LABORATORY USE ONLY

Physical Income			1.1	OR LABORATORY USE ONLY
Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
Temperature of the sample or temperature blank				Project (EPA) # () 4-()()() 7 > ()
Condition of sample(s) acceptable? (Check for leakage, breakage, and volume) Do VOA's or Radon have air			-	Temperature 3 °C CON CON
pupples;				211.03
Was the paperwork submitted adequate and completely filled out? Hold times acceptable?	<u> </u>			
Do the paperwork and sample labels agree?	1	ć'		
Preservation listed on the sample bottle(s)?				
How did the laboratory receive the sample(s)?				Hand delivered or to cocked Stoces
Was the sample(s) received in a cooler?		7		
110W IIIdDV COOlers were received		l		Number of Coolers
What was used to lower the temp?				Ice Cold Packs(s)
War al CON	L	IST REI	OW TO	Nothing Nothing
Was the Client contacted by phone?			- T	D BE COMPLETED ONLY IF APPLICABLE Date Time
Reason	1	J	- 1	DateTime
		Ī	- 1	Initials
Additional Comments:				initials
	- 1		- 1	
			- 1	
present, was the Custody of Seal intact?				
Vas the sample(s) subcontracted? List the				
amples which were sent and tests				Contract Lab:
	•		Î	Date/Time 20-1 - 55
	• .		. 1	Name of Staff Releasing Sample: $A75120^{-1} \cdot 3:55$
ompleted By:		atas (-	-{~	D8-04

Completed By: Date:	= Not Applicable
	A75120-1 06/07 13:55
Additional Comments:	

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE Sample # : A75120-1

Site : PLAISTOW Locator : AE-18S

Collectby

: S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 13:55 Log in Date : 06/08/2004 10:16

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte	Results	Units	MCL EPA Method
ALKALINITY	120.4	mg/L	310.1
CHLORIDE	7	mg/L	250 325.2
NITRATE-N	<0.05	mg/L	10 353.2
NITROGEN, TKN	.6	mg/L	351.2
SULFATE	2	mg/L	250 300.0

Garry Haworth

Authorized Signature:

Inorganics Supervisor

mg/L = milligrams per Liter

ug/kg = Micrograms per Kilogram < = Less Than

mg/kg = milligrams per Kilogram

BDL = Below Detection Limit

ug/L = micrograms per Liter \Rightarrow = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE Sample # : A75120-2

Site : PLAISTOW Locator : AE-18D

Collectby

: S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

WMEB

Collection Date: 06/07/2004 15:05 Log in Date : 06/08/2004 10:16

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte	Results	Units	MCL	FDA Mathad	8.684 8.6844 8 .6844 8.684 8.44 8.44 8.44 8.44 8.44 8.4
ALKALINITY	48.1	mg/L	****	310.1	
CHLORIDE NITRATE-N	14	mg/L	250	325.2	
NITROGEN, TKN	<0.05 <.25	mg/L mg/L	10	353.2	
SULFATE	14	mg/L	250	351.2 300.0	

Garry Haworth

Authorized Signature:

incruanics Supervise

mg/L = milligrams per Liter

ug/kg = Micrograms per Kilogram < = Less Than

mg/kg = milligrams per Kilogram

BDL = Below Detection Limit

ug/L = micrograms per Liter \Rightarrow = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit report=comm_non

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE

Site : PLAISTOW

Sample #

: A75120-3

Locator : SH-3S

Collectby : S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Account #: 04-01-04 Project #: 04-0007307

Collection Date: 06/07/2004 09:55 Log in Date : 06/08/2004 10:16 Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte ALKALINITY CHLORIDE NITRATE-N NITROGEN,TKN SULFATE	Results 9.1 5 <0.05 <.25 4	Units mg/L mg/L mg/L mg/L mg/L	MCL 250 10 250	EPA Method 310.1 325.2 353.2 351.2 300.0	
--	---	---	-------------------------	---	--

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter BDL = Below Detection Limit

ug/kg = Micrograms per Kilogram < = Less Than ug/L = micrograms per Liter

mg/kg = milligrams per Kilogram

> = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit report=comm_non

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE

Site : PLAISTOW

Sample #

: A75120-4

Locator : SH-3I

Collectby : S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 11:20 Log in Date

Account #: 04-01-04

: 06/08/2004 10:16

Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte	Results	Units	MCL	PTX NA 4 L 22	- 15 1
ALKALINITY CHLORIDE	45.4 7	mg/L	250	EPA Method	
NITRATE-N NITROGEN,TKN	.23 <.25	mg/L mg/L	10	325.2 353.2	
SULFATE	8	mg/L mg/L	250	351.2 300.0	

Authorized Signature:

Garry Haworth

inorganics Supervisor

mg/L = milligrams per Liter

ug/kg = Micrograms per Kilogram < = Less Than

mg/kg = milligrams per Kilogram

BDL = Below Detection Limit

ug/L = micrograms per Liter

> = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE

Site : PLAISTOW

Sample # : A75120-5

Locator : SH-3D

Collectby

: S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 12:40

Log in Date : 06/08/2004 10:16

Account #: 04-01-04

Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte Results ALKALINITY 25.1 CHLORIDE 11 NITRATE-N <0.05 NITROGEN, TKN <.25 SULFATE 9	Units mg/L mg/L mg/L mg/L mg/L	MCL 250 10 250	EPA Method 310.1 325.2 353.2 351.2 300.0
--	---	-------------------------	---

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter BDL = Below Detection Limit

ug/kg = Micrograms per Kilogram < = Intergances Supervisor Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE

Site : PLAISTOW

Sample #

: A75120-6

Locator : SH-15S

Collectby

: S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 13:47 Log in Date : 06/08/2004 10:16

Account #: 04-01-04

Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte	Results	Units	MCL	EPA Method
ALKALINITY	37.7	mq/L		310 1
CHLORIDE	26	mq/L	250	325.2
NITRATE-N	<0.05	mg/L	10	353.2
NITROGEN, TKN	<.25	mg/L		351.2
SULFATE	6	mg/L	250	300.0

Authorized Signature:

mg/L = milligrams per Liter

BDL = Below Detection Limit

pCi/L = Pico Curies per Liter P-A = Present - Absent

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE Sample # : A75120-7

Site : PLAISTOW

Locator : SH-15I

Collectby

: S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 11:22 Log in Date

: 06/08/2004 10:16

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte ALKALINITY CHLORIDE NITRATE-N NITROGEN,TKN SULFATE	Results 27.3 392 1.24 <.25 13		MCL 250 10 250	EPA Method 310.1 325.2 353.2 351.2 300.0	
--	--	--	-------------------------	---	--

Authorized Signature:

Garry Haworth Inorganies Supervisor

mg/L = milligrams per Liter BDL = Below Detection Limit

ug/kg = Micrograms per Kilogram < = Less Than

mg/kg = milligrams per Kilogram

ug/L = micrograms per Liter

> = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit report=comm_non

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE Site : PLAISTOW Sample # : A75120-8 Locator : SH-43S

Collectby : S PERKINS/L DESMARAIS Descript : PLAISTOW, BEEDE WASTE OIL, MSC

WMEB

Collection Date: 06/07/2004 15:03 Account #: 04-01-04 Log in Date : 06/08/2004 10:16 Project #: 04-0007307 Completion Date: 07/07/2004 Sample Month: Misc ID:

Analyte	Results	Units	MCL	EPA Method
ALKALINITY	58.2	mg/L		310.1
CHLORIDE	7	mg/L	250	325.2
NITRATE-N	<0.05	mg/L	10	353.2
NITROGEN, TKN	<.25	mg/L		351.2
SULFATE	5	mg/L	250	300.0

Authorized Signature:

mg/L = milligrams per Liter BDL = Below Detection Limit ug/kg = Micrograms per Kilogram < = Less Than Supervisor = milligrams per Kilogram ug/L = micrograms per Liter

> = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit report=comm non

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Client ID : IN HOUSE Sample # : A75120-9

Site : PLAISTOW Locator : SH-43 DUP

Collectby : S PERKINS/L DESMARAIS

Descript : PLAISTOW, BEEDE WASTE OIL, MSC

Collection Date: 06/07/2004 15:08 Log in Date : 06/08/2004 10:16

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/07/2004

Sample Month:

Misc ID:

Analyte	Results	Units	MCL	EPA Method
ALKALINITY	57.8	mg/L		310.1
CHLORIDE	7	mg/L	250	325.2
NITRATE-N	<0.05	mq/L	10	353.2
NITROGEN, TKN	.3	mg/L		351.2
SULFATE	5	mg/L	250	300.0

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter BDL = Below Detection Limit ug/kg = Micrograms per Kilogram < = Less Trians Supervisor = milligrams per Kilogram ug/L = micrograms per Liter

> = Greater Than MCL = Maximum Contamiment Level

pCi/L = Pico Curies per Liter P-A = Present - Absent

RDL = Reporting Detection Limit report=comm non

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Comments: 48 hour holding time!

Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697 Alkalinity Matrix Date/Time Sample Location /ID Sampled Lab ID# Other / Notes (For Lab Use Only) AE-14 AQ 6/8/04 1400 A75275-1 06/08 14:00 AE-14 dup AQ 14.05 A75275-2 04/09 14-05 AE-17D AQ 14:00 A75275-3 14.00 SH-25 AQ A75275-4 11:19 06/08 11.10 19:29 LD 12:38 SH-QI AQ A75275-5 06/08 12:29 SH-2D AQ 10:18 A75275-6 06/08 10:18 AQ SH 45 A75275-7 69:45 06/08 09:45 AQ SH 4I 12000 A75275-8 AQ 06/08 12:00 35 24 1 23 SHUD 13:00 A75275-9 06/08 13:00 __ AQ AQ AQ

n .		
Preservation:	Fe/Mn (HNO2) TVN (H2004)	
1)	Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice)	
_ X		
Relinguished By	WAIN NORMANDE IN LIGHT OF THE PROPERTY OF THE	
	Pan Domand Pate and Time 6/8/04 17:05 Received By Socked Stonge	
	Received by Obligation	Matrix: $A = Air S = Soil AQ = Aqueous \pi Other:$
Relinquished By		A Add A All 3 – 3011 AQ = Aqueous π Other;
reiniquisited by	Date and Time	
	Date and Time Received For Laboratory By	
_ 1	7 - 7	Section No.: 22.0
Page	of Data Davis La	Revision No.: 1 (HWRB)
	or Data Reviewed By	Date: 1-17-01
	Date	·
		Page 1 of 1

Physical Inspection of the sample Containers and submitted papers Temper (EPA)	
blank Current?	FOR LABORATORY
haine) Do Wage, breat schlable?	Inspection Comments ONLY
and completel submit	Perature
Preservation !!	°C C
Was the sample()	Time chip from Dottles Lingt Employeemen Dottles Marie Date Mariena (2)
What was used to lower the tea	Hand delivered on Mail
The Client of	Number
Additional Comments:	Cold Packs(s) Nothing Date COMPLETED ONLY IF APPLICABLE Initials
If present, was the Custody of Seal intact? Was the sample(s) subcontracted? List the requested:	Initials Initials Initials
Was the sample(s) subcontracted? List the requested:	
Completed By:	Contract Lab: Date/Time
Proceed By:	Name of Staff Releasing Sample:
Date:	Colados Sample:
	PUS J
	NA = Not Apple

BEEDE WELLS Site # 04-000-7307

	Site # 04-1
	Cs
65 sa	mples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14	SH-23I
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-24I
AE-21	SH-24D
AE-22	SH-25S
	SH-25I
SH-2S	SH-25D
SH-2I	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-3I	SH-29S
SH-3D	SH-33S
SH-4S	SH-38S
SH-4I	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S	SH-56S
SH-14!	SH-57S
SH-14D	
SH-15S	
SH-15I	
SH-15D	WP-4
SH-19S	WP-10
SH-19I	WP-12
SH-19D	WP-14
SH-20S	WP-15
SH-20I	WP-17
SH-20D	WP-18
SH-21S	
SH-21I	
SH-21D	

Natural Attenuation *
27 samples
AF 0
AE-2
AE-12
AE-14
AE-1/D
AE-18S
AE-18D
SH-2S
SH-2I
SH-2D
SH-3S
SH-3I
SH-3D
SH-4S
(SH-4I
SH-4D
SH-15S
SH-15I
SH-22S
SH-22D
SH-22R
SH-23S
SH-23I
SH-23D
SH-24S
SH-24I
SH-24D
SH-43S
WALL THE STATE OF
CEL MANAGEMENT AND A STREET OF THE STREET OF

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75275-1

Locator : AE-14

Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 14:00

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:36 Completion Date: 07/07/2004

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Analyte	Results	Units		EPA Method
ALKALINITY	15.9	mq/L		310.1
CHLORIDE	<3	mq/L	3	325.2
NITRATE-N	.74	mg/L	.05	353.2
NITROGEN, TKN	<.25	mq/L	.25	351.2
SULFATE	6	mg/L	1	300.0

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

: AE-14 DUP Locator

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW Site Collectby: S PERKINS/L DESMARAIS

Collection Date: 06/08/2004 14:05 Log in Date : 06/09/2004 12:36

Account #: 04-01-04

Completion Date: 07/07/2004

Project #: 04-0007307

Misc ID

Results Units RDL EPA Method Analyte 310.1 mq/L 15.9 ALKALINITY mg/L 325.2 3 <3 CHLORIDE 353.2 .73 mg/L .05 NITRATE-N 351.2 < .25 mg/L .25 NITROGEN, TKN 300.0 6 mg/L 1 SULFATE

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75275-3

Category: IN HOUSE

Locator : AE-17D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Collection Date: 06/08/2004 14:00

: PLAISTOW Site

Collectby: S PERKINS/L DESMARAIS

300.0

Completion Date: 07/07/2004

Log in Date : 06/09/2004 12:36

Account #: 04-01-04

Misc ID

ALKALINITY

CHLORIDE

SULFATE

NITRATE-N

NITROGEN, TKN

Analyte

Project #: 04-0007307

RDL EPA Method Results Units 56.4 310.1 mg/L 325.2 3 mg/L <0.05 353.2 mg/L .05 .25 351.2 < .25 mg/L

1

Authorized Signature: Garry Haworth

12

7

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/L

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-2S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Sample #: A75275-4

Category: IN HOUSE

Site : PLAISTOW

Collection Date: 06/08/2004 11:19 Log in Date : 06/09/2004 12:36 Completion Date: 07/07/2004

Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04 Project #: 04-0007307

Misc ID

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	8.1	mg/L		310.1
CHLORIDE	<3	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	2	mg/L	1	300.0

Authorized Signature: 4

Garry Haworth

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = microgrinorganitstSapervisor

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-2I

Category: IN HOUSE Descript: PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site : PLAISTOW

Collection Date: 06/08/2004 12:29 Collectby: S

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:36 Completion Date: 07/07/2004 Account #: 04-01-04

Misc ID :

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	84.1	mg/L		310.1
CHLORIDE	18	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	7	mg/L	1	300.0

Authorized Signature:

Garry Haworth

ug/L = microgramorganics Supervisor

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idx1

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75275-6 Category: IN HOUSE Locator : SH-2D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/08/2004 10:18

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:36

Account #: 04-01-04

Completion Date: 07/07/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL :	EPA Method
ALKALINITY	63	mg/L		310.1
CHLORIDE	6	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	12	mg/L	1	300.0

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-4S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA, Category: IN HOUSE

WMEB

: PLAISTOW Matrix : Aqueous Site

Collectby: S PERKINS/L DESMARAIS Collection Date: 06/08/2004 09:45

Log in Date : 06/09/2004 12:36 Account #: 04-01-04 Project #: 04-0007307 Completion Date: 07/07/2004

Misc ID

mg/L = milligrams per Liter

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	9.9	mg/L		310.1
CHLORIDE	5	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	.25	351.2
SULFATE	5	mg/L	1	300.0

Authorized Signature: _

Garry Haworth Inorganics Supervisor

= Greater Than ug/L = micrograms per Liter

ug/kg = micrograms per Kilogram BDL = Below Detection Limit = Less Than

P-A = Present/Absent pCi/L = pico Curies per Liter mg/kg = milligrams per Kilogram RDL = Reporting Detection Limit

rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75275-8

Locator : SH-4I

Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site

Collection Date: 06/08/2004 12:00 Log in Date : 06/09/2004 12:36

: PLAISTOW

Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04

Completion Date: 07/07/2004

Misc ID

Project #: 04-0007307

Analyte Results Units RDL EPA Method ALKALINITY 58.1 mg/L 310.1 CHLORIDE 8 mg/L 3 325.2 .35 NITRATE-N mg/L .05 353.2 NITROGEN, TKN < .25 mg/L .25 351.2 SULFATE 5 mg/L 1 300.0

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-4D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW Site

Collection Date: 06/08/2004 13:00

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/09/2004 12:36

Account #: 04-01-04

Completion Date: 07/07/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Method
ALKALINITY	26.7	mg/L		310.1
CHLORIDE	27	mg/L	3	325.2
NITRATE-N	<0.05	mg/L	.05	353.2
NITROGEN, TKN	<.25	mg/L	. 25	351.2
SULFATE	23	mg/L	1	300.0

Garry Haworth

Authorized Signature: Inorganics Supervisor

mg/L = milligrams per Liter

ug/L = micrograms per Liter

= Greater Than

= Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

P-A = Present/Absent

RDL = Reporting Detection Limit

rpt = agency.idxl

INVOICE NUMBER: 0026116-IN INVOICE DATE: 07/07/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

08/06/04

Sales cd	Description	Quantity	Cost	Amount
	A75275-1			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAI	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
	A75275-2			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAL	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
	A75275-3	•		
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAI	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
3 CT	A75275-4	1 000	10.00	10.00
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3 1ALKAL	RNITROGEN, NITRATE-N AQUEOUS BALKALINITY AQUEOUS	1.000 1.000	10.00 17.00	10.00
1TKN	NITROGEN, TKN AQUEOUS	1.000		$\begin{bmatrix} -\frac{1}{2}, 00 \\ 25, 00 \end{bmatrix}$
TIKN	NIIROGEN,IRN AQUEOUS	1.000	25 00 Invoice Total:	

Make checks payable to:

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Treasurer State of NH

Project Number: 04-0007307

Invoice Number: 0026116

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

INVOICE NUMBER: 0026116-IN INVOICE DATE: 07/07/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

08/06/04

Sales cd	Description	Quantity	Cost	Amount
	A75275-5			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAL	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
	A75275-6			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAL	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
	A75275-7			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	NITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAI	ALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25.00	25.00
	A75275-8			
1CL	CHLORIDE AQUEOUS	1.000	10.00	10.00
1SO4	SULFATE AQUEOUS	1.000	25.00	25.00
1NO3	RNITROGEN, NITRATE-N AQUEOUS	1.000	10.00	10.00
1ALKAL	BALKALINITY AQUEOUS	1.000	17.00	17.00
1TKN	NITROGEN, TKN AQUEOUS	1.000	25,00 Invoice Total:	[Z5.00]
			mvoice rotal.	

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026116

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT PO BOX 95

CONCORD NH 03302-0095

CONTINUED

IDES

INVOICE NUMBER: 0026116-IN INVOICE DATE: 07/07/04 DUE DATE: 08/06/04

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 3

Sales cd	Description	Quantity	Cost	Amount
1CL 1SO4 1NO3 1ALKAL 1TKN	A75275-9 CHLORIDE AQUEOUS SULFATE AQUEOUS NITROGEN, NITRATE-N AQUEOUS ALKALINITY AQUEOUS NITROGEN, TKN AQUEOUS	1.000	10.00 25.00 10.00 17.00	10.00 25.00 10.00 17.00 25.00
	REVIEW THIS INVOICE THOROUGHLY; BEFORE MONTH'S END; PAYMENT IS			
	BEFORE MONTH S END; PAIMENT IS	AUTOMATIC FRO	Invoice Total:	[7 83.00]

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount: 783.007

Project Number: 04-0007307

Invoice Number: 0026116

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

40

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Aikalinity	Other / Notes	Lab ID # (For Lab Use Only) A75581-1 06/15 11:27
		A75581-1 06/15 11:27
Schold by	Matrix: A=	Air S= Soil AQ= Aqueous π Otl
		Axlad Strage Matrix: A=

FOR LABORATORY USE ONLY

Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
TROJECT (EPA) # CUrrent?	 	 		
Temperature of the sample or temperature blank	1		ł	Project (EPA) # 64-600 730 7
				Terror
Condition of sample(s) acceptable? (Check for leakage, breakage, and				Temperature 4° °C
volume) Do VOA's or Radon have air				
_ กสถก(62)	L.		1	
Was the paperwork submitted adequate			- -	
and completely filled out? Hold times				
acceptable?				
Do the paperwork and sample labels agree?	ز		+	
Preservation lined			1	
Preservation listed on the sample bottle(s)?	ت س			
How did the laboratory receive the				
sample(s)//				Hand delivered or
Was the sample(s) received in a coolers				Mail Mail
IOW IIIdily Coolers were received?	1		[Number of Coolers_
What was used to lower the temp?	ľ		1	Ice Cold Packs(s) Looled Stronge.
			1	Cold Packs(s)
Was the Clim	L	ST BE	LOW T	Nothing O BE COMPLETED ONLY IF APPLICABLE
Was the Client contacted by phone?				DateTime
Reason				Title
Additional Comments:				Initials
January, and the state of the s		l		
	j	- 1	l	
		1		
present, was the Custody of Seal intact?			 -	
as the sample(s) subcontracted? Liet the			 -	Contract Lab:
amples which were sent and tests equested:			- 1	Contract Lab;
questeu.			- 1	Date/Time
	1			- ······ - ·······
				Name of Staff Releasing Sample:
- 4				
ompleted By:	D	ate:	6/16	MY
			110	NA = Not Applicable

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75581-1 Category: IN HOUSE

Locator : AE-2

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous Collection Date: 06/15/2004 11:27

: PLAISTOW

Log in Date : 06/16/2004 07:34

Completion Date: 07/20/2004

Collectby: S PERKINS/L. DESMARIS Account #: 04-01-04

Misc ID

Project #: 04-0007307

ALKALINITY CHLORIDE NITRATE-N NITROGEN, TKN	Results 36.7 83 <0.05	Units mg/L mg/L mg/L mg/L	RDL 3 .05 .25	EPA Method 310.1 325.2 353.2 351.2
SULFATE	4	mg/L	1	300.0

Authorized Signature: Patusen Bulford

= Greater Than

mg/L = milligrams per Liter < = Less Than

pCi/L = pico Curies per Liter

ug/L = micrograms per Liter BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

mg/kg = milligrams per Kilogram

P-A = Present/Absent

RDL = Reporting Detection Limit

rpt = agency.idxl